Open Access System for Information Sharing

Login Library

 

Article
Cited 30 time in webofscience Cited 32 time in scopus
Metadata Downloads

Halide-Bridged Binuclear HX-Splitting Catalysts SCIE SCOPUS

Title
Halide-Bridged Binuclear HX-Splitting Catalysts
Authors
POWERS, DAVID CHWANG, SEUNG JUNZHENG, SHAO-LIANGNOCERA, DAINEL G
Date Issued
2014-09-01
Publisher
American Chemical Society
Abstract
Two-electron mixed-valence compounds promote the rearrangement of the two-electron bond photochemically. Such complexes are especially effective at managing the activation of hydrohalic acids (HX). Closed HX-splitting cycles require proton reduction to H2 and halide oxidation to X2 to be both accomplished, the latter of which is thermodynamically and kinetically demanding. Phosphazane-bridged Rh2 catalysts have been especially effective at activating HX via photogenerated ligand-bridged intermediates; such intermediates are analogues of the classical ligand-bridged intermediates proposed in binuclear elimination reactions. Herein, a new family of phosphazane-bridged Rh2 photocatalysts has been developed where the halide-bridged geometry is designed into the ground state. The targeted geometries were accessed by replacing previously used alkyl isocyanides with aryl isocyanide ligands, which provided access to families of Rh2L1 complexes. H2 evolution with Rh2 catalysts typically proceeds via two-electron photoreduction, protonation to afford Rh hydrides, and photochemical H2 evolution. Herein, we have directly observed each of these steps in stoichiometric reactions. Reactivity differences between Rh2 chloride and bromide complexes have been delineated. H2 evolution from both HCl and HBr proceeds with a halide-bridged Rh2 hydride photoresting state. The H2-evolution efficiency of the new family of halide-bridged catalysts is compared to a related catalyst in which ligand-bridged geometries are not stabilized in the molecular ground state, and the new complexes are found to more efficiently facilitate H2 evolution.
URI
https://oasis.postech.ac.kr/handle/2014.oak/99984
DOI
10.1021/ic501136m
ISSN
0020-1669
Article Type
Article
Citation
Inorganic Chemistry, vol. 53, no. 17, page. 9122 - 9128, 2014-09-01
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse