Open Access System for Information Sharing

Login Library

 

Article
Cited 61 time in webofscience Cited 63 time in scopus
Metadata Downloads

CIS–ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties SCIE SCOPUS

Title
CIS–ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties
Authors
LEE, WON-KYUHWANG, SEUNG JUNCHO, MIN-JAEPARK, HONG-GYUHAN, JIN-WOOSONG, SEOGJEONGJANG, JONG HYUNSEO, DAE-SHIK
Date Issued
2013-01
Publisher
Royal Society of Chemistry
Abstract
We demonstrate self-aligned and high-performance liquid crystal (LC) systems doped with 1-dimensional (1D) chain-like clusters of CuInS2 (CIS)–ZnS core–shell quantum dots (QDs). By changing the cell fabrication method of the LC–QD composites, we can selectively control the orientation of the LC molecules between the homogeneous and homeotropic states without conventional LC alignment layers. The homeotropic alignment of LCs was achieved by random dropcasting and the homogeneous alignment was performed using a capillary injection of LC–QDs due to the random or linear diffusion of QD clusters into ITO defects. The electrically compensated bend (ECB)- and vertically aligned (VA) mode LC displays (LCDs) containing our LC–QD composite both showed superior electro-optic (EO) properties. A 37.1% reduction in the threshold voltage (Vth) and a 36.6% decrease in the response time were observed for ECB mode LCDs, and a 47.0% reduction in the Vth and a 38.3% decrease in the response time were observed for VA mode LCDs, meaning that the proposed LC–QD composites have a great potential for the production of advanced flexible LCDs.
URI
https://oasis.postech.ac.kr/handle/2014.oak/99958
DOI
10.1039/c2nr32458j
ISSN
2040-3364
Article Type
Article
Citation
Nanoscale, vol. 5, no. 1, page. 193 - 199, 2013-01
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse