Open Access System for Information Sharing

Login Library

 

Article
Cited 10 time in webofscience Cited 11 time in scopus
Metadata Downloads

Hierarchical Motion Segmentation through sEMG for Continuous Lower Limb Motions SCOPUS

Title
Hierarchical Motion Segmentation through sEMG for Continuous Lower Limb Motions
Authors
PARK, SEONG SIKLEE, DONG HYEONCHUNG, WAN KYUNKIM, KEE HOON
Date Issued
2019-10
Publisher
IEEE Robotics and Automation Society
Abstract
Surface electromyogram (sEMG), an electrical signal generated from muscles, has been used for a long time to decode human motion intentions for interactions between a robot and human. To support not only the diverse movements in human daily living but also the task of increasing the human' robot interface and its applications, a new algorithm that can classify continuous lower limb motions using sEMG signals is proposed herein. By simply constructing motion hierarchy and probability distribution of sEMG for each motion phase obtained by using only kinematic motion data and sEMG data, it is possible to demonstrate higher classification accuracy than state-of-the-art supervised learning methods consuming much time. Four different experiments were performed on five participants and the algorithm was verified to successfully distinguish between walking from running, and between standing up and sitting down from jumping.
URI
https://oasis.postech.ac.kr/handle/2014.oak/99802
DOI
10.1109/LRA.2019.2932343
ISSN
2377-3766
Article Type
Article
Citation
IEEE Robotics and Automation Letters, vol. 4, no. 4, page. 4402 - 4409, 2019-10
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

정완균CHUNG, WAN KYUN
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse