Open Access System for Information Sharing

Login Library

 

Article
Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads

Integrated simulation of turbulent convection, radiation and conduction during a selenization process for large-scale CIGS thin films SCIE SCOPUS

Title
Integrated simulation of turbulent convection, radiation and conduction during a selenization process for large-scale CIGS thin films
Authors
Yu, TaejongYoon, DaegeunYou, Donghyun
Date Issued
2018-10
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Abstract
A numerical methodology for simulations of multi-mode heat transfer during a selenization process for CIGS (Copper Indium Gallium Selenide) solar cell films has been developed. Turbulent fluid dynamics and convective heat transfer are simulated using a finite-volume large-eddy simulation (LES) technique while thermal conduction and radiation are predicted using finite-element methods. The computational methodology is validated for three heat transfer modes. Using the technique, a numerical study of heat transfer during the selenization process for deposition of a CIGS layer is performed to analyze the thermo-fluid phenomena occurring during the process. The present method is found to well predict temperature distribution on substrates as a function of both space and time. It is also analyzed that how turbulent fluid motions alter temperature distributions on the substrate during the selenization process. (C) 2018 Elsevier Ltd. All rights reserved.
URI
https://oasis.postech.ac.kr/handle/2014.oak/95641
DOI
10.1016/j.ijheatmasstransfer.2018.04.133
ISSN
0017-9310
Article Type
Article
Citation
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, vol. 125, page. 761 - 771, 2018-10
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

유동현YOU, DONGHYUN
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse