Open Access System for Information Sharing

Login Library

 

Article
Cited 73 time in webofscience Cited 76 time in scopus
Metadata Downloads

Photoinduced Recovery of Organic Transistor Memories with Photoactive Floating-Gate Interlayers SCIE SCOPUS

Title
Photoinduced Recovery of Organic Transistor Memories with Photoactive Floating-Gate Interlayers
Authors
Jeong, Y.J.Yun, D.-J.Kim, S.H.Jang, J.Park, C.E.
Date Issued
2017-04
Publisher
AMER CHEMICAL SOC
Abstract
Optical memories based on photoresponsive organic field-effect transistors (OFETs) are of great interest due to their unique applications, such as multibit storage memories and flexible imaging circuits. Most studies of OFET-type memories have focused on the photoresponsive active channels, but more useful functions can be additionally given to the devices by using floating gates that can absorb light. In this case, effects of photoirradiation on photoactive floating-gate layers need to be fully understood. Herein, we studied the photoinduced erasing effects of floating-gate interlayers on the electrical responses of OFET-type memories and considered the possible mechanisms. Polymer/C60 composites were inserted between pentacene and SiO2 to form photoresponsive floating-gate interlayers in transistor memory. When exposed to light, C60 generated excitons, and these photoexcited carriers contributed to the elimination of trapped charge carriers, which resulted in the recovery of OFET performance. Such memory devices exhibited bistable current states controlled with voltage-driven programming and light-driven erasure. Furthermore, these devices maintained their charge-storing properties over 10 000 s. This proof-of-concept study is expected to open up new avenues in information technology for the development of organic memories that exhibit photoinduced recovery over a wide range of wavelengths of light when combined with appropriate photoactive floating-gate materials. ? 2017 American Chemical Society.
Keywords
Flexible electronics; Fullerenes; Gates (transistor); Optical data storage; Organic field effect transistors; Recovery; Transistors; Electrical response; Floating gates; Organic transistor; Photo-induced; Photo-irradiation; Photoexcited carriers; Photoresponsive organic field-effect transistors; Possible mechanisms; Field effect transistors
URI
https://oasis.postech.ac.kr/handle/2014.oak/92113
DOI
10.1021/acsami.7b02365
ISSN
1944-8244
Article Type
Article
Citation
ACS Applied Materials & Interfaces, vol. 9, no. 13, page. 11759 - 11769, 2017-04
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

박찬언PARK, CHAN EON
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse