Open Access System for Information Sharing

Login Library

 

Article
Cited 56 time in webofscience Cited 57 time in scopus
Metadata Downloads

Observational evidence for the formation of DMS-derived aerosols during Arctic phytoplankton blooms SCIE SCOPUS

Title
Observational evidence for the formation of DMS-derived aerosols during Arctic phytoplankton blooms
Authors
Park, Ki-TaeJang, SehyunLee, KitackYoon, Young JunKim, Min-SeobPark, KihongCho, Hee-JooKang, Jung-HoUdisti, RobertoLee, Bang-YongShin, Kyung-Hoon
Date Issued
2017-08
Publisher
COPERNICUS GESELLSCHAFT MBH
Abstract
The connection between marine biogenic dimethyl sulfide (DMS) and the formation of aerosol particles in the Arctic atmosphere was evaluated by analyzing atmospheric DMS mixing ratio, aerosol particle size distribution and aerosol chemical composition data that were concurrently collected at Ny-Alesund, Svalbard (78.5 degrees N, 11.8 degrees E), during April and May 2015. Measurements of aerosol sulfur (S) compounds showed distinct patterns during periods of Arctic haze (April) and phytoplankton blooms (May). Specifically, during the phytoplankton bloom period the contribution of DMS-derived SO42- to the total aerosol SO42- increased by 7-fold compared with that during the proceeding Arctic haze period, and accounted for up to 70% of fine SO42- particles (<2.5 mu m in diameter). The results also showed that the formation of submicron SO42- aerosols was significantly associated with an increase in the atmospheric DMS mixing ratio. More importantly, two independent estimates of the formation of DMS-derived SO42- aerosols, calculated using the stable S-isotope ratio and the non-sea-salt SO42-/methanesulfonic acid ratio, respectively, were in close agreement, providing compelling evidence that the contribution of biogenic DMS to the formation of aerosol particles was substantial during the Arctic phytoplankton bloom period.
Keywords
ATMOSPHERIC DIMETHYL SULFIDE; CLOUD CONDENSATION NUCLEI; NEW-PARTICLE FORMATION; SULFURIC-ACID; ISOTOPIC COMPOSITION; ATLANTIC-OCEAN; SVALBARD ISLANDS; NY-ALESUND; SULFATE; NUCLEATION
URI
https://oasis.postech.ac.kr/handle/2014.oak/50402
DOI
10.5194/acp-17-9665-2017
ISSN
1680-7316
Article Type
Article
Citation
ATMOSPHERIC CHEMISTRY AND PHYSICS, vol. 17, no. 15, page. 9665 - 9675, 2017-08
Files in This Item:

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이기택LEE, KITACK
Div of Environmental Science & Enginrg
Read more

Views & Downloads

Browse