Open Access System for Information Sharing

Login Library

 

Article
Cited 15 time in webofscience Cited 15 time in scopus
Metadata Downloads

Exploring the Kinetics of Switchable Polymer Surfaces with Dynamic Tensiometry SCIE SCOPUS

Title
Exploring the Kinetics of Switchable Polymer Surfaces with Dynamic Tensiometry
Authors
Kleingartner, Justin A.Lee, HyominRubner, Michael F.McKinley, Gareth H.Cohen, Robert E.
Date Issued
2013-07
Publisher
RSC
Abstract
Switchable polymer multilayer coatings consisting of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) were prepared via Layer-by-Layer (LbL) assembly and post-functionalized with poly(ethylene glycol methyl ether) (PEG). This resulted in a soft polar coating that reversibly and repeatedly rearranges from hydrophobic to hydrophilic (or vice versa) when contacted with water (or air). Goniometry is used to quantify the forward surface rearrangement in the form of transient measurements of the water contact angle. By examining the time evolution of the water contact angle at various temperatures, the apparent activation energy for the forward surface rearrangement (E-a,E- (f)) can be determined. Further insight can be gained into the kinetics of this surface reconstruction process by utilizing dynamic tensiometry to measure the evolution in the contact angle of a liquid meniscus at several rates and temperatures as it advances or recedes over the multilayer films. A simple first-order thermally-activated rate process is shown to describe the forward and reverse surface reconstruction and enables the shape of the measured tensiometric force curves during repeated immersion and emersion to be predicted quantitatively. Using this model we show that the character of this switchable surface coating can appear to be hydrophobic or hydrophilic depending on a single dimensionless parameter which incorporates the characteristic time-scale for temperature-dependent surface rearrangement, the speed of immersion and the capillary length of the liquid meniscus.
URI
https://oasis.postech.ac.kr/handle/2014.oak/40833
DOI
10.1039/c3sm50596k
ISSN
1744-683X
Article Type
Article
Citation
Soft Matter, vol. 9, no. 26, page. 6080 - 6090, 2013-07
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse