Open Access System for Information Sharing

Login Library

 

Article
Cited 123 time in webofscience Cited 123 time in scopus
Metadata Downloads

Facile synthesis of manganese carbonate quantum dots/Ni(HCO3)2-MnCO3 composites as advanced cathode materials for high energy density asymmetric supercapacitors SCIE SCOPUS

Title
Facile synthesis of manganese carbonate quantum dots/Ni(HCO3)2-MnCO3 composites as advanced cathode materials for high energy density asymmetric supercapacitors
Authors
CHOI, SI YOUNGQ. X. XiaK. S. HuiK. N. HuiS. D. KimJ. H. LimL. J. ZhangR. S. ManeJ. M. YunK. H. Kim
Date Issued
2015-09
Publisher
,
Abstract
We have developed a high performance supercapacitor cathode electrode composed of well dispersed MnCO3 quantum dots (QDs, similar to 1.2 nm) decorated on nickel hydrogen carbonate-manganese carbonate (Ni(HCO3)(2)-MnCO3) hedgehog-like shell@needle (MnCO3 QDs/NiH-Mn-CO3) composites directly grown onto a 3D macro-porous nickel foam as a binder-free supercapacitor electrode by a facile and scalable hydrothermal method. The MnCO3 QDs/NiH-Mn-CO3 composite electrode exhibited a remarkable maximum specific capacitance of 2641.3 F g(-1) at 3 A g(-1) and 1493.3 F g(-1) at 15 A g(-1). Moreover, the asymmetric supercapacitor with MnCO3 QDs/NiH-Mn-CO3 composites as the positive electrode and graphene as the negative electrode showed an energy density of 58.1 W h kg(-1) at a power density of 900 W kg(-1) as well as excellent cycling stability with 91.3% retention after 10 000 cycles, which exceeded the energy densities of most previously reported nickel or manganese oxide/hydroxide-based asymmetric supercapacitors. The ultrahigh capacitive performance is attributed to the presence of the high surface area core-shell nanostructure, the well dispersed MnCO3 quantum dots, and the high conductivity of MnCO3 quantum dots as well as the synergetic effect between multiple transition metal ions. The superior supercapacitive performance of the MnCO3 QDs/NiH-Mn-CO3 composites makes them promising cathode materials for high energy density asymmetric supercapacitors.
Keywords
HIGH-PERFORMANCE SUPERCAPACITORS; REDUCED GRAPHENE OXIDE; CARBIDE-DERIVED CARBON; LITHIUM-ION BATTERIES; NIO NANOSHEET ARRAYS; DE-NOX CATALYSTS; NICKEL-OXIDE; ELECTROCHEMICAL PERFORMANCES; CAPACITIVE PERFORMANCE; ULTRATHIN NANOSHEETS
URI
https://oasis.postech.ac.kr/handle/2014.oak/39337
DOI
10.1039/c5ta04005a
ISSN
2050-7488
Article Type
Article
Citation
Journal of Materials Chemistry A, vol. 3, no. 44, page. 22102 - 22117, 2015-09
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse