Open Access System for Information Sharing

Login Library

 

Article
Cited 14 time in webofscience Cited 16 time in scopus
Metadata Downloads

Challenge beyond Graphene: Metal oxide/graphene/metal oxide electrodes for optoelectronic devices SCIE SCOPUS

Title
Challenge beyond Graphene: Metal oxide/graphene/metal oxide electrodes for optoelectronic devices
Authors
Kim, SKwon, KCPark, JYCho, HWLee, IKim, SYLee, JL
Date Issued
2016-05-25
Publisher
AMER CHEMICAL SOC
Abstract
Graphene has shown strong potential to occupy transparent electrodes, replacing indium tin oxide (ITO). However, the commercialization of graphene is still limited 800 because of its poor chemical and electrical stability from 0 reaction with environmental factors or essential materials such as poly[3,4-(ethylenedioxy)thiophene]:poly(styrenesulfonate) (PEDOT:PSS). Here, we have demonstrated a multilayered electrode in which graphene is sandwiched between metal oxides (MOs) that have high stability and optical properties. The MOs overcoated graphene, and thereby protected it from desorption of chemical dopants. Because of the resulting chemical and electrical stability, the electrodes maintain low sheet resistance 2.4 times longer than bare graphene and 36 times longer than PEDOT:PSS-coated graphene. On the basis of optical simulations, we derive the design rules for highly transparent MO/graphene/MO stacks and demonstrate an optimized structure with a TiO2 and WO3 electrode that has high transmittance (96%) which exceeds those of ITO (87%) and graphene (90%). Using a TiO2/graphene/WO3 electrode in organic light-emitting diodes (lambda = 520 nm) instead of ITO or graphene anodes increases the cavity resonance and thereby increases power efficiencies by up to 30%. The MO/graphene/MO stacks designed will provide opportunities for commercialization of flexible electronics with graphene electrodes.
URI
https://oasis.postech.ac.kr/handle/2014.oak/38070
DOI
10.1021/acsami.5b12443
ISSN
1944-8244
Article Type
Article
Citation
ACS APPLIED MATERIALS & INTERFACES, vol. 8, no. 20, page. 12932 - 12939, 2016-05-25
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이종람LEE, JONG LAM
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse