Open Access System for Information Sharing

Login Library

 

Article
Cited 54 time in webofscience Cited 56 time in scopus
Metadata Downloads

Valley-symmetry-preserved transport in ballistic graphene with gate-defined carrier guiding SCIE SCOPUS

Title
Valley-symmetry-preserved transport in ballistic graphene with gate-defined carrier guiding
Authors
Kim, MChoi, JHLee, SHWatanabe, KTaniguchi, TJhi, SHLEE, HU JONG
Date Issued
2016-11
Publisher
NATURE PUBLISHING GROUP
Abstract
Ever since the discovery of graphene(1), valley symmetry and its control(2,3) in the material have been a focus of continued studies in relation to valleytronics(4,5). Carrier-guiding quasi-one-dimensional (1D) graphene nanoribbons (GNRs)(6-12) with quantized energy subbands preserving the intrinsic Dirac nature have provided an ideal system to that end. Here, by guiding carriers through dual-gate operation in high-mobility monolayer graphene, we report the realization of quantized conductance in steps of 4e(2)/h in zero magnetic field, which arises from the full symmetry conservation of quasi-1D ballistic GNRs with effective zigzag-edge conduction. A tight-binding model calculation confirms conductance quantization corresponding to zigzag-edge conduction even for arbitrary GNR orientation. Valley-symmetry conservation is further confirmed by intrinsic conductance interference with a preserved Berry phase of pi in a graphene-based Aharonov-Bohm(AB) ring preparedby similar dualgating. This top-down approach for gate-defined carrier guiding in ballistic graphene is of particular relevance in the efforts towards efficient and promising valleytronic applications.
URI
https://oasis.postech.ac.kr/handle/2014.oak/38012
DOI
10.1038/NPHYS3804
ISSN
1745-2473
Article Type
Article
Citation
NATURE PHYSICS, vol. 12, no. 11, page. 1022 - +, 2016-11
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse