Open Access System for Information Sharing

Login Library

 

Article
Cited 7 time in webofscience Cited 7 time in scopus
Metadata Downloads

Non-Dioxin-Like Polychlorinated Biphenyls Inhibit G-Protein Coupled Receptor-Mediated Ca2+ Signaling by Blocking Store-Operated Ca2+ Entry SCIE SCOPUS

Title
Non-Dioxin-Like Polychlorinated Biphenyls Inhibit G-Protein Coupled Receptor-Mediated Ca2+ Signaling by Blocking Store-Operated Ca2+ Entry
Authors
Se-Young ChoiKeimin LeeYurim ParkSeung-Hyun LeeSu-Hyun JoSungkwon ChungKyong-Tai Kim
Date Issued
2016-03-10
Publisher
PUBLIC LIBRARY SCIENCE
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous pollutants which accumulate in the food chain. Recently, several molecular mechanisms by which non-dioxin-like (NDL) PCBs mediate neurodevelopmental and neurobehavioral toxicity have been elucidated. However, although the G-protein coupled receptor (GPCR) is a significant target for neurobehavioral disturbance, our understanding of the effects of PCBs on GPCR signaling remains unclear. In this study, we investigated the effects of NDL-PCBs on GPCR-mediated Ca2+ signaling in PC12 cells. We found that ortho-substituted 2,2', 6-trichlorinated biphenyl (PCB19) caused a rapid decline in the Ca2+ signaling of bradykinin, a typical Gq-and phospholipase C beta-coupled GPCR, without any effect on its inositol 1,4,5-trisphosphate production. PCB19 reduced thapsigargin-induced sustained cytosolic Ca2+ levels, suggesting that PCB19 inhibits SOCE. The abilities of other NDL-PCBs to inhibit store-operated Ca2+ entry (SOCE) were also examined and found to be of similar potencies to that of PCB19. PCB19 also showed a manner equivalent to that of known SOCE inhibitors. PCB19-mediated SOCE inhibition was confirmed by demonstrating the ability of PCB19 to inhibit the SOCE current and thapsigargin-induced Mn2+ influx. These results imply that one of the molecular mechanism by which NDL-PCBs cause neurobehavioral disturbances involves NDL-PCB-mediated inhibition of SOCE, thereby interfering with GPCR-mediated Ca2+ signaling.
URI
https://oasis.postech.ac.kr/handle/2014.oak/36858
DOI
10.1371/JOURNAL.PONE.0150921
ISSN
1932-6203
Article Type
Article
Citation
PLOS ONE, vol. 11, no. 3, 2016-03-10
Files in This Item:

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김경태KIM, KYONG TAI
Dept of Life Sciences
Read more

Views & Downloads

Browse