Open Access System for Information Sharing

Login Library

 

Article
Cited 74 time in webofscience Cited 79 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKim, H-
dc.contributor.authorLee, J-
dc.contributor.authorBarlat, F-
dc.contributor.authorKim, D-
dc.contributor.authorLee, MG-
dc.date.accessioned2017-07-19T12:44:11Z-
dc.date.available2017-07-19T12:44:11Z-
dc.date.created2016-01-26-
dc.date.issued2015-09-15-
dc.identifier.issn1359-6454-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/36345-
dc.description.abstractThe effects of the stress state and temperature on the martensitic phase transformation behavior in a TRIP-assisted steel (TRIP780) were investigated using multi-axial experimental techniques. For this purpose, five different stress states were considered; i.e., uniaxial tension, uniaxial compression, equi-biaxial tension, plane strain tension and simple shear. A range of temperatures from room to 100 degrees C for each stress state condition except the simple shear test were investigated. In particular, for the equi-biaxial tension data in warm conditions, a specially designed hydraulic bulge experiment was adopted. In situ magnetic measurements were performed to monitor the evolution of the martensitic content throughout each experiment. A stress state and temperature dependent transformation kinetics law was proposed, which incorporates a non-linear function of the stress triaxiality, Lode angle parameter and temperature. This new model captures the measured martensitic phase transformation kinetics of TRIP780 steel over a wide range of stress states and temperature reasonably well. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.relation.isPartOfACTA MATERIALIA-
dc.titleExperiment and modeling to investigate the effect of stress state, strain and temperature on martensitic phase transformation in TRIP-assisted steel-
dc.typeArticle-
dc.identifier.doi10.1016/J.ACTAMAT.2015.06.023-
dc.type.rimsART-
dc.identifier.bibliographicCitationACTA MATERIALIA, v.97, pp.435 - 444-
dc.identifier.wosid000359875800042-
dc.date.tcdate2019-02-01-
dc.citation.endPage444-
dc.citation.startPage435-
dc.citation.titleACTA MATERIALIA-
dc.citation.volume97-
dc.contributor.affiliatedAuthorBarlat, F-
dc.identifier.scopusid2-s2.0-84938416310-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc11-
dc.description.scptc10*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusDEFORMATION-INDUCED TRANSFORMATION-
dc.subject.keywordPlus304 STAINLESS-STEEL-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordAuthorTRIP-assisted steel-
dc.subject.keywordAuthorMartensitic phase transformation-
dc.subject.keywordAuthorStress state-
dc.subject.keywordAuthorMagnetic saturation method-
dc.subject.keywordAuthorTransformation kinetics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

BARLAT FREDERIC GERARDBARLAT, FREDERIC GERARD
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse