Open Access System for Information Sharing
All
Title
Author
Subject
Login
Library
Help
검색
HOME
Communities & Collections
Researchers
Title
Browse by Researchers
BARLAT, FREDERIC GERARD (BARLAT FREDERIC GERARD)
Ferrous & Energy materials Technology(철강 · 에너지소재대학원)
Field(s)
E-Mail
Homepage
Loading...
Export
Journal Papers
(International)
Journal Papers
(Domestic)
Conference Papers
(International)
Conference Papers
(Domestic)
Journal Papers(International)
Journal Papers(Domestic)
Conference Papers(International)
Conference Papers(Domestic)
20 items
100 items
200 items
Show more items...
Keyword
BEHAVIOR:18||ALUMINUMALLOY SHEETS:15||Bauschinger effect:14||DEFORMATION:13||Anisotropy:13||Finite element method:11||MODEL:10||PREDICTION:9||PLASTICITY:9||METALS:9||YIELD FUNCTIONS:9||CRYSTAL PLASTICITY:8||STRAINPATH:8||STEEL:7||SHEET:7||Advanced high strength steel:7||Springback:7||YIELD FUNCTION:6||METAL PLASTICITY:6||CYCLIC PLASTICITY:6||EVOLUTION:6||CRITERION:5||SPRINGBACK EVALUATION:5||INCREMENTAL DEFORMATIONTHEORY:5||ANISOTROPIC YIELD FUNCTIONS:5||SHEETS:5||Plasticity:5||Constitutive model:5||STRAINRATE:5||Constitutive modeling:5||FORMING LIMIT DIAGRAMS:5||Anisotropic hardening:5||PLASTIC ANISOTROPY:5||ANISOTROPY:4||ELASTOPLASTIC CONSTITUTIVE RELATIONS:4||INTEGRATION ALGORITHMS:4||CRYSTALLOGRAPHIC TEXTURE:4||Yield function:4||SIMPLE SHEAR:4||Elastoplasticity:4||Constitutive models:4||SHEET METALS:4||Stress integration algorithm:4||SIMULATION:4||Virtual fields method:4||STRESS:4||STRAIN REVERSAL:4||ALUMINUM:4||MICROSTRUCTURE:4||Anisotropic material:3||Stainless steel:3||HARDENING MODEL:3||FORMABILITY:3||KINETICS:3||PLASTIC BEHAVIOR:3||Hole expansion:3||Sheet metal forming:3||PLASTIC STRAINRATE:3||Hardening:3||Strain path change:3||Fracture:3||ORTHOTROPIC PLASTICITY:3||STEELS:3||Sheet forming:3||High strength steel:3||FORMING SIMULATIONS:3||Strain rate potentials:3||TRIP STEELS:3||TEXTURE DEVELOPMENT:3||TRANSFORMATION:3||POLYCRYSTALLINE METALS:3||IDENTIFICATION:3||Mechanical testing:3||DUALPHASE STEELS:3||TWIP steel:3||TEXTURE:3||TRIP steel:3||MECHANICALPROPERTIES:3||YOUNGS MODULUS:3||dualphase steel:3||LOWCARBON STEEL:3||Finite element simulation:3||TENSILE TEST:3||Formability:3||Crystal plasticity:3||DUALPHASE STEEL:3||Vickers hardness:2||POLYCRYSTALS:2||WORKHARDENING BEHAVIOR:2||Aluminum alloy:2||MAGNESIUM ALLOY SHEETS:2||IMPLICIT:2||INDUCEDPLASTICITY STEEL:2||formability:2||finite element simulation:2||LENGTH CHANGES:2||IF STEEL:2||Finite elements:2||ELEMENT:2||Parameter identification:2||Ferritic stainless steel:2||Earing profile:2||EXPLICIT:2||INTERNALSTRESS:2||Direct search:2||Anisotropic hardenings:2||NUMERICALANALYSIS:2||Dislocations:2||Yield condition:2||RECTANGULAR CROSSSECTION:2||SPECIMENS:2||FREE END TORSION:2||Tensioncompression asymmetry:2||Swift effects:2||SINGLECRYSTALS:2||tailored properties:2||Crosshardening:2||LOCALIZED NECKING:2||Udraw/bending:2||Sheet metal:2||Yield surface:2||STRESS YIELD FUNCTION:2||FINITEELEMENT METHODS:2||AZ31 ALLOY:2||STATE:2||Forming limit:2||FCC:2||Constitutive behaviour:2||SHEETMETAL:2||crosshardening:2||Strain hardening:2||Loadingunloading test:2||YIELD CRITERION:2||Anisotropic hardening model:2||BACK EVALUATION:2||LAWS:2||INTERSTITIALFREE STEEL:2||Hot stamping:2||INELASTIC BEHAVIOR:2||Isotropickinematic hardening:2||GRAIN:2||MECHANICAL EQUATION:2||LOAD RELAXATION:2||TEMPERATURE:2||FORMING LIMIT PREDICTION:2||Stressstrain curves:2||Isotropic hardening:2||RECONSTRUCTION:2||Partial Quenching (PQ):2||Hot Press Forming (HPF):2||Tailor Welded Blank (TWB):2||QUENCHING PROCESS:2||SPRINGBACK SIMULATION:2||Cutting plane algorithm:2||Shear:2||KINEMATIC HARDENING LAWS:2||Dislocation density:2||Constitutive behavior:2||STRAINPATH CHANGES:2||Elastoplastic behaviour:2||CURVE:2||friction:2||LARGESTRAIN:2||RECOVERY:2||Isoerror map:2||TRANSIENTBEHAVIOR:2||Bpillar reinforcement:2||Yield criteria:2||FINITEELEMENT SIMULATIONS:2||Strain hardening stagnation:2||ACTIVATION VOLUME:2||BCC METALS:2||representative volume element:2||sliding velocity:2||TRANSFORMATIONS:2||ALLOY SHEETS:2||KirkaldyVenugopalan model:2||Finite element:2||Strain rate potential Srp200418p:2||Warm cup drawing:2||Simplex method:2||Inverse problem:2||FRACTURE INITIATION:2||mesoscale:2||TRANSFORMATION PLASTICITY:2||PHASECHANGE:2||AHSS:2||PLASTICDEFORMATION:2||Twinning:2||Closest point projection method:2||Strainpath change:2||TENSIONCOMPRESSION:2||Phase transformation:2||Polycrystalline model:2||STAINLESSSTEEL:2||RETURN MAPPING ALGORITHM:2||LIMIT:2||DIAGRAMS:2||SOLIDS:2||TEXTURE FUNCTION:2||Fullfield measurement:2||ELASTOPLASTIC CONSTITUTIVE PARAMETERS:2||Fullfield measurements:2||contact pressure:2||phase transformation:2||Nonlinear elastic modulus:2||Inelastic recovery:2||LOW TEMPERATURE:2||ANISOTROPIC MATERIALS:2||AUTOMOTIVE SHEETS:2||STRESSRELAXATION:1||High Mn TWIP steel:1||BCC POLYCRYSTALS:1||STRESS STATE:1||PURITY ALPHATITANIUM:1||DEEPDRAWING PROCESS:1||INDUCED PLASTICITY STEELS:1||ALLOY:1||Strength differential effect:1||CRYSTALS:1||THINFILMS:1||phiModel:1||FCC METALS:1||Eating:1||Anisotropic:1||CELLWALLS:1||METAL:1||Shearing:1||MAXIMUM FORCE CRITERION:1||mathematical model:1||Forming limits:1||Convex function:1||Delamination fracture:1||COMPUTATIONAL SIMULATION:1||CONSTITUTIVE MODEL:1||DESIGN:1||tension/compression asymmetry:1||precipitate strengthening:1||Aluminum alloys:1||Grain refinement:1||Relaxation:1||Loadingunloadingreloading:1||Thermography:1||Experimental validations:1||texture:1||Dynamic hardening:1||INTERNALSTRESSES:1||Computational efficiency:1||Modulus reduction:1||Springback prediction:1||Ferritic steel:1||Principle of virtual work:1||FERRITIC STAINLESSSTEEL:1||LUBRICATION:1||DP780:1||Cyclic tensiontorsion:1||Hydraulic bulge test:1||FCC CRYSTALS:1||Forming limit diagram:1||HOLE EXPANSION:1||Metal plasticity:1||metal forming:1||DEFORMATION ELASTOPLASTICITY:1||STACKINGFAULT ENERGY:1||rValue:1||Kinematic:1||Forming limit curve:1||Forming limit diagrams:1||STRAINPATH CHANGE:1||aluminium:1||X ALLOYS:1||strain hardening:1||METASTABLE AUSTENITIC STEELS:1||linear transformations:1||IMPACT:1||Dual phase:1||Bending (deformation):1||Deformation:1||Image analysis:1||Strain:1||simple shear:1||HARDENING/SOFTENING BEHAVIOR:1||Anisotropic yield functions:1||Ferrite:1||Thermal barrier coatings:1||Comparative studies:1||Multistage forming:1||void nucleation micromechanisms:1||TENSILE DEFORMATION:1||Stepwise motion:1||Mecahnical servopress:1||strength:1||asymmetric rolling:1||Plastic anisotropy:1||Aluminum tube:1||Temperature:1||Yield criterion:1||NONASSOCIATED FLOW:1||Nanoindenter:1||STRAIN GRADIENT PLASTICITY:1||TENSILESTRENGTH:1||Deep Drawing:1||TEXTURE EVOLUTION:1||Constitutive laws:1||Limit analysis:1||Necking:1||Biaxial tensile tests:1||SUBSEQUENT YIELD SURFACE:1||Stretchflangeability:1||Plastic flow localization:1||FRACTURETOUGHNESS BEHAVIOR:1||CLOSURE:1||INDUCED MARTENSITICTRANSFORMATION:1||anisotropic yield function:1||ALUMINUMALLOYS:1||PRESSURE:1||thermomechanical modeling:1||Linear transformations:1||Solidshell:1||MULTIPLE INTEGRATION POINTS:1||TEMPERATUREDEPENDENCE:1||Elastoplasticity:1||Digital image correlation technique:1||tempering process:1||advanced high strength steel:1||STRAIN:1||Elastic moduli:1||Process Variables:1||Parameter estimation:1||Constitutive parameters:1||Inverse problem solution:1||Metallic material:1||EBSD analysis:1||FRACTURE MECHANISMS:1||DUCTILE FRACTURE:1||OVERSTRESS AFVBO:1||Crystallographic dislocation model:1||FAILURE CRITERION:1||springback compensation:1||ROOMTEMPERATURE:1||Plates:1||ELECTROPLATED NICKEL:1||Analytical approach:1||Cup height profile:1||REVERSAL:1||FINITEELEMENTMETHOD:1||POLYCRYSTALLINE MODEL:1||INTRAGRANULAR BEHAVIOR:1||DEFORMATIONBEHAVIOR:1||Anisotropic sheet metals:1||hexagonal metals:1||Texture:1||SHEAR TEXTURE:1||High strain rate:1||DUALPHASE:1||low cycle fatigue:1||PLANESTRAIN DEFORMATION:1||Materials properties:1||Martensitic steel:1||Hysteresis:1||Piecewise linear approximations:1||Finite element simulations:1||Localized thinning:1||Twist:1||SIMULATIONS:1||Hardening law:1||Hole expansion test:1||DISPLACEMENT ADJUSTMENT:1||Hexagonal materials:1||FINITEELEMENTANALYSIS:1||COMPRESSION:1||PACKED METALS:1||INSITU:1||INDENTATION EXPERIMENTS:1||DEFORMATION POLYCRYSTAL VISCOPLASTICITY:1||ROLLINGTEXTURE:1||SHEETMETAL FORMABILITY:1||PLATE:1||martensitic phase transformation:1||numerical model:1||REPRESENTATION:1||aluminum 6111T4 alloys:1||TEMPERATURES:1||SOLIDSHELL ELEMENT:1||Mechanical behavior:1||DEFORMATION TEXTURES:1||FLOWSTRESS:1||TRIP:1||Elongation:1||Dynamic strain aging:1||Strain measurement:1||heat treatment:1||MICROSTRUCTURES:1||DISLOCATION DENSITIES:1||METALLIC MATERIALS:1||C. Characteristics:1||Unloading:1||Nonlinear elasticity:1||Cost effectiveness:1||Inverse problems:1||RECRYSTALLIZATION:1||ALUMINUM TUBES:1||WORKHARDENING/SOFTENING BEHAVIOR:1||Materials modelling:1||DIE DESIGN METHOD:1||ANISOTROPIC RESPONSE:1||SLIP:1||Nanotension:1||Microstructures:1||GRAINSIZE:1||Yield stress:1||PART:1||HARDENING BEHAVIOR:1||Polynomials:1||REPRESENTATIONS:1||Aluminumlithium (AlLi):1||Smallscale yielding:1||GROWTH:1||304STAINLESSSTEEL:1||Micromechanical model:1||FINITEELEMENT SIMULATION:1||PATH CHANGES:1||AA5754:1||ENHANCEMENT:1||Metal drawing:1||Elasticplastic finite element model:1||Reverse loading:1||Martensite:1||Tensile testing:1||Microstructure evolutions:1||Microstructural analysis:1||Elasticity:1||Stiffness:1||Ferritic stainless steel sheet:1||Shear stress:1||OXIDE SCALE:1||Stretch flangeability:1||RECTANGULAR H96 TUBE:1||STRAINS:1||Advanced high strength steel (AHSS):1||Low carbon steels:1||Forming limit stress diagram:1||MarciniakKuczinsky model:1||ACCURACY:1||Earing:1||PRESSURE SENSITIVE METALS:1||Buckling:1||WROUGHT MAGNESIUM:1||Material testing:1||FINITE STRAIN:1||RATEDEPENDENT POLYCRYSTALS:1||SELFCONSISTENT APPROACH:1||Numerical methods:1||Ferritic stainless steel sheets:1||Modeling:1||CONSTITUTIVEEQUATIONS:1||Stress and deformation fields:1||Yld200418p model:1||ALLI ALLOYS:1||AMBIENT:1||austenitic stainless steels:1||CYCLIC DEFORMATION:1||DESCRIBE:1||friction stir welding:1||Enhanced assumed strain:1||Asymmetrical rolling:1||GRAINREFINEMENT:1||Advanced high strength steels:1||Steel sheet:1||Twist springback:1||AL(SI,GE) ALLOYS:1||Piecewise linear techniques:1||Commercial finite element codes:1||Springback simulations:1||Stamping:1||Optimization:1||Proton exchange membrane fuel cells (PEMFC):1||Shear tests:1||PART II:1||TESTS:1||ASYMMETRY:1||Thermomechanical FE simulation:1||MECHANICALBEHAVIOR:1||High strength steels:1||asymmetrical U shape bending:1||blade:1||OPTIMIZATION:1||NONLINEAR MECHANICAL RESPONSE:1||Gripless test:1||NANOCRYSTALLINE COPPER:1||Texture crystal plasticity:1||STRAINRATE POTENTIALS:1||ROLLED SHEETS:1||CHANGING STRAIN PATHS:1||PLANESTRESS CONDITIONS:1||shear fracture:1||Numerical simulation:1||3D finite element analysis:1||TSTRESS:1||FATIGUE:1||strain rate:1||THICKNESS:1||DP steel:1||WIDERANGE:1||Bending moments:1||Deep drawing:1||Digital image correlations:1||Kinematic hardening model:1||crystal plasticity:1||ALUMINUM SINGLECRYSTALS:1||Microstructure:1||Viscoplastic selfconsistent:1||Phenomenological plasticity:1||Fuel cells:1||Graphite bipolar plates:1||Stress strain relation:1||FRICTION:1||
Publication & Time Cited Count
(For the Last 5 years)
Browse
Communities & Collections
Researcher
Title
Login
Library
Help