Open Access System for Information Sharing

Login Library

 

Article
Cited 18 time in webofscience Cited 18 time in scopus
Metadata Downloads

Complex Thin Film Morphologies of Poly(n-hexyl isocyanate)(5k,10k)-Poly(epsilon-caprolactone)(1-3)(10k,17k) Miktoarm Star Polymers SCIE SCOPUS

Title
Complex Thin Film Morphologies of Poly(n-hexyl isocyanate)(5k,10k)-Poly(epsilon-caprolactone)(1-3)(10k,17k) Miktoarm Star Polymers
Authors
Phinjaroenphan, RKim, YYRee, BJIsono, TLee, JRugmai, SKim, HMaensiri, SKakuchi, TSatoh, TRee, M
Date Issued
2015-08-25
Publisher
AMER CHEMICAL SOC
Abstract
Two series of crystalline-crystalline miktoarm star polymers were prepared and their thin film morphologies were investigated in detail by synchrotron grazing incidence X-ray scattering (GIXS): poly(n-hexyl isocyanate)(5000) poly(epsilon-caprolactone) (1-3)(17000) (PHIC(5k)-PCL1-3(17k)) and poly(n-hexyl isocyanate) (10000) poly(epsilon-caprolactone)(1-3)(10000) (PHIC(10k)-PCL1-3(10k)). In addition, their thermal properties were examined. All miktoarm star polymers revealed a two-step thermal degradation behavior where the PHIC arm was degraded first, followed by the PCL arm underwent degradation. Interestingly, all miktoarms were found to show a highly enhanced thermal stability, regardless of their molecular weight over 3k to 17k, which might be attributed to their one-end group capped with the counterpart arm(s) via arm-joint formation. Surprisingly, all miktoarm star polymers always developed only lamellar structure in toluene- and chloroform-annealed films via phase-separation, regardless of the length of PHIC arm as well as the length and number of PCL arm. Despite having highly imbalanced volume fractions, lamellar structure was constructed in the films of miktoarm star polymers through the override of volume fraction rule based on the rigid chain properties, self-assembling characteristics, conformational asymmetry, and compressibilities of PHIC and PCL arms. Furthermore, the orientation of such lamellar structures was controlled by the selection of either toluene or chloroform in the solvent-annealing process. The PHIC arm phases in the lamellar structures favorably formed a mixture of edge-on and face-on structures with fully extended backbone and bristle conformations even under the confined lamellar geometry and arm-joint. The PCL arm phases still crystallized, forming fringed-micelle like structures in which orthorhombic crystals were laterally grown along the in-plane direction of lamellae although their crystallization was somewhat suppressed by the confined lamellar geometry and arm-joint. Overall, crystalline-crystalline PHIC-PCL1-3 miktoarm polymers demonstrated very interesting but unusual, very complex hierarchical structures in the solvent-annealed thin films.
URI
https://oasis.postech.ac.kr/handle/2014.oak/36223
DOI
10.1021/ACS.MACROMOL.5B00875
ISSN
0024-9297
Article Type
Article
Citation
MACROMOLECULES, vol. 48, no. 16, page. 5816 - 5833, 2015-08-25
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이문호REE, MOONHOR
Dept of Chemistry
Read more

Views & Downloads

Browse