Open Access System for Information Sharing

Login Library

 

Article
Cited 73 time in webofscience Cited 73 time in scopus
Metadata Downloads

In Vivo Differentiation of Therapeutic Insulin-Producing Cells from Bone Marrow Cells via Extracellular Vesicle-Mimetic Nanovesicles SCIE SCOPUS

Title
In Vivo Differentiation of Therapeutic Insulin-Producing Cells from Bone Marrow Cells via Extracellular Vesicle-Mimetic Nanovesicles
Authors
Oh, KKim, SRKim, DKSeo, MWLee, CLee, HMOh, JEChoi, EYLee, DSGho, YSPark, KS
Date Issued
2015-12
Publisher
AMER CHEMICAL SOC
Abstract
The current diabetes mellitus pandemic constitutes an important global health problem. Reductions in the mass and function of beta-cells contribute to most of the pathophysiology underlying diabetes. Thus, physiological control of blood glucose levels can be adequately restored by replacing functioning beta-cell mass. Sources of functional islets for transplantation are limited, resulting in great interest in the development of alternate sources, and recent progress regarding cell fate change via utilization of extracellular vesicles, also known as exosomes and microvesicles, is notable. Thus, this study investigated the therapeutic capacity of extracellular vesicle-mimetic nanovesicles (NVs) derived from a murine pancreatic beta-cell line. To differentiate insulin-producing cells effectively, a three-dimensional in vivo microenvironment was constructed in which extracellular vesicle-mimetic NVs were applied to subcutaneous Matrigel platforms containing bone marrow (BM) cells in diabetic immunocompromised mice. Long-term control of glucose levels was achieved over 60 days, and differentiation of donor BM cells into insulin-producing cells in the subcutaneous Matrigel platforms, which were composed of islet-like cell clusters with extensive capillary networks, was confirmed along with the expression of key pancreatic beta-cell markers. The resectioning of the subcutaneous Matrigel platforms caused a rebound in blood glucose levels and confirmed the source of functioning beta-cells. Thus, efficient differentiation of therapeutic insulin-producing cells was attained in vivo through the use of extracellular vesicle-mimetic NVs, which maintained physiological glucose levels.
URI
https://oasis.postech.ac.kr/handle/2014.oak/35637
DOI
10.1021/ACSNANO.5B02997
ISSN
1936-0851
Article Type
Article
Citation
ACS Nano, vol. 9, no. 12, page. 11718 - 11727, 2015-12
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

고용송GHO, YONG SONG
Dept of Life Sciences
Read more

Views & Downloads

Browse