Open Access System for Information Sharing

Login Library

 

Article
Cited 470 time in webofscience Cited 0 time in scopus
Metadata Downloads

GLOBAL ANALYSIS OF THE INSULATOR BINDING PROTEIN CTCF IN CHROMATIN BARRIER REGIONS REVEALS DEMARCATION OF ACTIVE AND REPRESSIVE DOMAINS SCIE SCOPUS

Title
GLOBAL ANALYSIS OF THE INSULATOR BINDING PROTEIN CTCF IN CHROMATIN BARRIER REGIONS REVEALS DEMARCATION OF ACTIVE AND REPRESSIVE DOMAINS
Authors
Cuddapah, SJothi, RSchones, DERoh, TYCui, KRZhao, KJ
Date Issued
2009-01
Publisher
COLD SPRING HARBOR LAB PRESS, PUBLICA
Abstract
Insulators are DNA elements that prevent inappropriate interactions between the neighboring regions of the genome. They can be functionally classified as either enhancer blockers or domain barriers. CTCF ( CCCTC-binding factor) is the only known major insulator-binding protein in the vertebrates and has been shown to bind many enhancer-blocking elements. However, it is not clear whether it plays a role in chromatin domain barriers between active and repressive domains. Here, we used ChIP-seq to map the genome-wide binding sites of CTCF in three cell types and identified significant binding of CTCF to the boundaries of repressive chromatin domains marked by H3K27me3. Although we find an extensive overlapping of CTCF-binding sites across the three cell types, its association with the domain boundaries is cell-type-specific. We further show that the nucleosomes flanking CTCF-binding sites are well positioned. Interestingly, we found a complementary pattern between the repressive H3K27me3 and the active H2AK5ac regions, which are separated by CTCF. Our data indicate that CTCF may play important roles in the barrier activity of insulators, and this study provides a resource for further investigation of the CTCF function in organizing chromatin in the human genome.
Keywords
ENHANCER-BLOCKING ACTIVITY; HUMAN GENOME; C-MYC; NUCLEAR-ORGANIZATION; H19 GENE; SITES; TRANSCRIPTION; METHYLATION; DNA; WIDE
URI
https://oasis.postech.ac.kr/handle/2014.oak/28989
DOI
10.1101/GR.082800.10
ISSN
1088-9051
Article Type
Article
Citation
GENOME RESEARCH, vol. 19, no. 1, page. 24 - 32, 2009-01
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

노태영ROH, TAE YOUNG
Dept of Life Sciences
Read more

Views & Downloads

Browse