Open Access System for Information Sharing

Login Library

 

Article
Cited 29 time in webofscience Cited 34 time in scopus
Metadata Downloads

In vivo endothelization of tubular vascular grafts through in situ recruitment of endothelial and endothelial progenitor cells by RGD-fused mussel adhesive proteins SCIE SCOPUS

Title
In vivo endothelization of tubular vascular grafts through in situ recruitment of endothelial and endothelial progenitor cells by RGD-fused mussel adhesive proteins
Authors
Kang, TYLee, JHKim, BJKang, JAHong, JMKim, BSCha, HJRhie, JWCHO, DONG WOO
Date Issued
2015-03
Publisher
IOP Publishing
Abstract
The use of tissue mimics in vivo, including patterned vascular networks, is expected to facilitate the regeneration of functional tissues and organs with large volumes. Maintaining patency of channels in contact with blood is an important issue in the development of a functional vascular network. Endothelium is the only known completely non-thrombogenic material; however, results from treatments to induce endothelialization are inconclusive. The present study was designed to evaluate the clinical applicability of in situ recruitment of endothelial cells/endothelial progenitor cells (EC/EPC) and preendothelization using a recombinant mussel adhesive protein fused with arginine-glycine-aspartic acid peptide (MAP-RGD) coating in a model of vascular graft implantation. Microporous polycaprolactone (PCL) scaffolds were fabricated with salt leaching methods and their surfaces were modified with collagen and MAP-RGD. We then evaluated their anti-thrombogenicity with an in vitro hemocompatibility assessment and a 4-week implantation in the rabbit carotid artery. We observed that MAP-RGD coating reduced the possibility of early in vivo graft failure and enhanced re-endothelization by in situ recruitment of EC/EPC (patency rate: 2/3), while endothelization prior to implantation aggravated the formation of thrombosis and/or IH(patency rate: 0/3). The results demonstrated that in situ recruitment of EC/EPC by MAP-RGD could be a promising strategy for vascular applications. In addition, it rules out several issues associated with pre-endothelization, such as cell source, purity, functional modulation and contamination. Further evaluation of long term performance and angiogenesis from the luminal surface may lead to the clinical use of MAP-RGD for tubular vascular grafts and regeneration of large-volume tissues with functional vascular networks.
URI
https://oasis.postech.ac.kr/handle/2014.oak/27194
DOI
10.1088/1758-5090/7/1/015007
ISSN
1758-5082
Article Type
Article
Citation
Biofabrication, vol. 7, no. 1, 2015-03
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조동우CHO, DONG WOO
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse