Open Access System for Information Sharing

Login Library

 

Article
Cited 19 time in webofscience Cited 21 time in scopus
Metadata Downloads

Use of oxidation roasting to control NiO reduction in Ni-bearing limonitic laterite SCIE SCOPUS

Title
Use of oxidation roasting to control NiO reduction in Ni-bearing limonitic laterite
Authors
Park, JOKim, HSJung, SM
Date Issued
2015-02
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Abstract
Use of limonitic laterite as an iron source in conventional ironmaking is restricted due to its gangue composition and small particle size. Even direct reduction cannot effectively produce direct reduced iron (DRI) because NiO would be reduced together with iron oxide to form Fe-Ni. A small amount of Ni (about 2 wt.%) in DRI degrades the physical properties of final steel products. The current study investigated how oxidation roasting of limonitic laterite ores affected NiO reduction, with the goal of producing Ni-free DRI and Ni-bearing slag. Ni-bearing slag can be a good secondary Ni resource. Oxidation roasting made NiO inert under H-2 reduction at 900 degrees C by forming Ni-olivine. Optimum roasting temperature was proposed by examining phase transformation of limonitic laterite ores during heating and by FactSage calculation of the equilibrium Ni fraction in Ni-bearing phases. Furthermore, the effect of Mg-silicate forming additives on the control of NiO reducibility was clarified to maximize the suppression of NiO reduction. Among various additives such as MgSiO3, Mg2SiO4 and Fe-Ni smelting slag, Ni-free olivine-typed flux was found to be the most effective form of Ni-olivine because Ni-Mg ion exchange between Ni-bearing phase and Ni-free olivine occurs more readily than other Ni-olivine formation schemes. Finally, the mechanism of Ni-olivine formation during roasting was studied using a diffusion couple test. Calculated diffusivity values of Ni in Mg2SiO4 indicated that the two major routes of Ni-olivine formation while roasting limonitic laterite ore are (1) Ni partitioning within Mg-Ni silicate before crystallization and (2) Ni diffusion from spinel to Ni free olivine after crystallization. (C) 2014 Elsevier Ltd. All rights reserved.
URI
https://oasis.postech.ac.kr/handle/2014.oak/26923
DOI
10.1016/J.MINENG.2014.11.011
ISSN
0892-6875
Article Type
Article
Citation
MINERALS ENGINEERING, vol. 71, page. 205 - 215, 2015-02
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse