Open Access System for Information Sharing

Login Library

 

Article
Cited 11 time in webofscience Cited 15 time in scopus
Metadata Downloads

In Situ Temperature-Dependent Transmission Electron Microscopy Studies of Psedobinary mGeTe center dot Bi2Te3 (m=3-8) Nanowires and First-Principles Calculations SCIE SCOPUS

Title
In Situ Temperature-Dependent Transmission Electron Microscopy Studies of Psedobinary mGeTe center dot Bi2Te3 (m=3-8) Nanowires and First-Principles Calculations
Authors
Chan Su JungHan Sung KimHyung Soon ImKidong ParkJeunghee ParkJae-Pyoung AhnYoo, SJJin-Gyu KimJae Nyeong KimShim, JH
Date Issued
2015-06
Publisher
AMER CHEMICAL SOC
Abstract
Phase-change nanowires (NWs) have emerged as critical materials for fast-switching nonvolatile memory devices. In this study, we synthesized a series of mGeTe.Bi2Te3 (GBT) pseudobinary alloy NWsGe(3)Bi(2)Te(6) (m = 3), Ge4Bi2Te7 (m = 4), Ge5Bi2Te8 (m = 5), Ge6Bi2Te9 (m = 6), and Ge8Bi2Te11 (m = 8)and investigated their composition-dependent thermal stabilities and electrical properties. As m decreases, the phase of the NWs evolves from the cubic (C) to the hexagonal (H) phase, which produces unique superlattice structures that consist of periodic 2.2-3.8 nm slabs for m = 3-8. In situ temperature-dependent transmission electron microscopy reveals the higher thermal stability of the compositions with lower m values, and a phase transition from the H phase into the single-crystalline C phase at high temperatures (400 degrees C). First-principles calculations, performed for the superlattice structures (m = 1-8) of GBT and mGeTe.Sb2Te3 (GST), show an increasing stability of the H phase (versus the C phase) with decreasing m; the difference in stability being more marked for GBT than for GST. The calculations explain remarkably the phase evolution of the GBT and GST NWs as well as the composition-dependent thermal stabilities. Measurement of the current-voltage curves for individual GBT NWs shows that the resistivity is in the range 3-25 mO.cm, and the resistivity of the H phase is lower than that of the C phase, which has been supported by the calculations.
URI
https://oasis.postech.ac.kr/handle/2014.oak/26660
DOI
10.1021/ACS.NANOLETT.5B00755
ISSN
1530-6984
Article Type
Article
Citation
NANO LETTERS, vol. 15, no. 6, page. 3923 - 3930, 2015-06
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

심지훈SHIM, JI HOON
Dept of Chemistry
Read more

Views & Downloads

Browse