Open Access System for Information Sharing

Login Library

 

Article
Cited 266 time in webofscience Cited 274 time in scopus
Metadata Downloads

Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: Demonstrating the existence of a surface-complex-mediated path SCIE SCOPUS

Title
Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: Demonstrating the existence of a surface-complex-mediated path
Authors
Kim, SChoi, W
Date Issued
2005-03-24
Publisher
AMER CHEMICAL SOC
Abstract
The visible-light-induced degradation reaction of 4-chlorophenol (4-CP) was investigated in aqueous suspension of pure TiO2. Contrary to common expectations, 4-CP could be degraded under visible illumination (lambda > 420 nm), generating chlorides and CO2 concomitantly. The observed visible reactivity was not due to the presence of trace UV light since the visible-light-induced reactions exhibited behaviors distinguished from those of UV-induced reactions. Dichloroacetate could not be degraded under visible light, whereas it degraded with a much faster rate than 4-CP under UV irradiation. The addition of tert-butyl alcohol, a common OH radical scavenger, did not affect the visible reactivity of 4-CP, which indicates that OH radicals are not involved. Other phenolic compounds such as phenol and 2,4-dichlorophenol were similarly degraded under visible light. The surface complexation between phenolic compounds and TiO2 appears to be responsible for the visible light reactivity. Diffuse reflectance UV-vis spectra showed that 4-CP adsorbed on TiO2 powder induced visible light absorption. The visible light reactivity among several TiO2 samples was apparently correlated with the surface area of TiO2. The visible-light-induced photocurrents on a TiO2 electrode could be obtained only in the presence of 4-CP. It is proposed that a direct electron transfer from surface-complexed phenol to the conduction band of TiO2 upon absorbing visible light (through ligand-to-metal charge transfer) initiates the oxidative degradation of phenolic compounds. When the surface complex formation was hindered by surface fluorination, surface platinization, and high pH, the visible-light-induced degradation of 4-CP was inhibited. The evidence of visible-light-induced reactions and the experimental conditions affecting the visible reactivity were discussed in detail.
Keywords
CHARGE-TRANSFER COMPLEXES; DIOXIDE-FLUORIDE SYSTEM; INDUCED WATER CLEAVAGE; TIO2 SURFACE; ORGANIC-COMPOUNDS; SENSITIZED TIO2; AZO-DYE; PARTICLES; PHOTODEGRADATION; TRANSFORMATION
URI
https://oasis.postech.ac.kr/handle/2014.oak/24715
DOI
10.1021/JP045806Q
ISSN
1520-6106
Article Type
Article
Citation
JOURNAL OF PHYSICAL CHEMISTRY B, vol. 109, no. 11, page. 5143 - 5149, 2005-03-24
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

최원용CHOI, WONYONG
Div of Environmental Science & Enginrg
Read more

Views & Downloads

Browse