Open Access System for Information Sharing

Login Library

 

Article
Cited 185 time in webofscience Cited 189 time in scopus
Metadata Downloads

Substituent effects on the edge-to-face aromatic interactions SCIE SCOPUS

Title
Substituent effects on the edge-to-face aromatic interactions
Authors
Lee, ECHong, BHLee, JYKim, JCKim, DKim, YTarakeshwar, PKim, KS
Date Issued
2005-03-30
Publisher
AMER CHEMICAL SOC
Abstract
The edge-to-face interactions for either axially or facially substituted benzenes are investigated by using ab initio calculations. The predicted maximum energy difference between substituted and unsubstituted systems is similar to 0.7 kcal/mol (similar to 1.2 kcal/mol if substituents are on both axially and facially substituted positions). In the case of axially substituted aromatic systems, the electron density at the para position is an important stabilizing factor, and thus the stabilization/destabilization by substitution is highly correlated to the electrostatic energy. This results in its subsequent correlation with the polarization and charge transfer. Thus, the stabilization/destabilization by substitution is represented by the sum of electrostatic energy and induction energy. On the other hand, the facially substituted aromatic system depends on not only the electron-donating ability responsible for the electrostatic energy but also the dispersion interaction and exchange repulsion. Although the dispersion energy is the most dominating interaction in both axial and facial substitutions, it is almost canceled by the exchange repulsion in the axial substitution, whereas in the facial substitution, together with the exchange repulsion it augments the electrostatic energy. The systems with electron-accepting substituents (NO2, CN, Br, Cl, F) favor the axial substituent conformation, while those with electron-donating substituents (NH2, CH3, OH) favor the facial substituent conformation. The interactions for the T-shape complex systems of an aromatic ring with other counterpart such as H-2, H2O, HCI, and HF are also studied.
Keywords
POTENTIAL-ENERGY SURFACE; PI-PI INTERACTIONS; BENZENE DIMER; MOLECULAR RECOGNITION; HYDROGEN-BONDS; COMPLEXES; CHEMISTRY; STACKING; CLUSTERS; ARRAYS
URI
https://oasis.postech.ac.kr/handle/2014.oak/24699
DOI
10.1021/ja037454r
ISSN
0002-7863
Article Type
Article
Citation
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 127, no. 12, page. 4530 - 4537, 2005-03-30
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse