Open Access System for Information Sharing

Login Library

 

Article
Cited 74 time in webofscience Cited 82 time in scopus
Metadata Downloads

New findings in the catalytic activity of zinc glutarate and its application in the chemical fixation of CO2 into polycarbonates and their derivatives SCIE SCOPUS

Title
New findings in the catalytic activity of zinc glutarate and its application in the chemical fixation of CO2 into polycarbonates and their derivatives
Authors
Ree, MHwang, YKim, JSKim, HKim, GKim, H
Date Issued
2006-06-30
Publisher
ELSEVIER SCIENCE BV
Abstract
A heterogeneous zinc glutarate (ZnGA) catalyst and its derivatives were prepared from various zinc and glutarate sources. The hydrothermal reaction between zinc perchlorate hexahydrate and glutaronitrile afforded ZnGA single crystals (sc-ZnGA), with a monoclinic lattice unit cell and a P2/c space group, as determined by X-ray single-crystal structural analysis. The structural details of the ZnGA catalyst are crucial in helping to elucidate its activity in the copolymerization reactions between carbon dioxide (CO2) and alkylene oxides. X-ray absorption studies provided direct evidence that CO2 and propylene oxide (PO) are reversibly adsorbed onto the Zn ion centers on the ZnGA surface. Compared to CO2, PO was found to insert more easily into the Zn-O bond of the ZnGA catalyst, suggesting that the ZnGA-catalyzed copolymerization is initiated by PO rather than CO2. The activity of the ZnGA catalyst in the copolymerization of CO2 and PO was found to depend on the zinc source used, and its ability to produce a catalyst of large surface area and high crystallinity (>= 77%). Modification of the glutarate ligand with electron-donating or withdrawing substituents failed to enhance the ZnGA catalyst activity further, indicating that glutarate is the best ligand for the Zn metal ion to achieve a high catalytic activity in the Co-2 copolymerization with PO. The ZnGA-catalyzed copolymerization was further optimized to maximize the yield of alternating poly(propylene carbonate), and also extended to the terpolymerization of CO2 and PO with delta-valerolactone (VL). Terpolymers with high molecular weights and yields could be obtained by adjusting the PO/VL feed ratios. In addition, the terpolymers were found to exhibit excellent enzymatic and biological degradability. (c) 2006 Elsevier B.V. All rights reserved.
Keywords
zinc glutarate catalyst; heterogeneous catalyst; carbon dioxide/propylene oxide copolymerization; polycarbonate; carbon dioxide/propylene oxide/delta-valerolactone terpolymerization; poly(carbonate-co-ester); degradability; CARBON-DIOXIDE; PROPYLENE-OXIDE; ALTERNATING COPOLYMERIZATION; CLIMATE-CHANGE; POLYMERIZATION; SYSTEM; HOMOPOLYMERIZATION; EPOXIDES; POLYMERS; GROWTH
URI
https://oasis.postech.ac.kr/handle/2014.oak/23973
DOI
10.1016/j.cattod.2006.02.068
ISSN
0920-5861
Article Type
Article
Citation
CATALYSIS TODAY, vol. 115, no. 1-4, page. 134 - 145, 2006-06-30
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이문호REE, MOONHOR
Dept of Chemistry
Read more

Views & Downloads

Browse