Open Access System for Information Sharing

Login Library

 

Article
Cited 447 time in webofscience Cited 474 time in scopus
Metadata Downloads

ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light SCIE SCOPUS

Title
ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light
Authors
Kim, WYFujiwara, SSuh, SSKim, JKim, YHan, LQDavid, KPutterill, JNam, HGSomers, DE
Date Issued
2007-09-20
Publisher
NATURE PUBLISHING GROUP
Abstract
The circadian clock is essential for coordinating the proper phasing of many important cellular processes. Robust cycling of key clock elements is required to maintain strong circadian oscillations of these clock-controlled outputs. Rhythmic expression of the Arabidopsis thaliana F-box protein ZEITLUPE (ZTL) is necessary to sustain a normal circadian period by controlling the proteasome-dependent degradation of a central clock protein, TIMING OF CAB EXPRESSION 1 (TOC1)(1,2). ZTL messenger RNA is constitutively expressed, but ZTL protein levels oscillate with a threefold change in amplitude through an unknown mechanism(3). Here we show that GIGANTEA (GI) is essential to establish and sustain oscillations of ZTL by a direct protein-protein interaction. GI, a large plant-specific protein with a previously undefined molecular role, stabilizes ZTL in vivo. Furthermore, the ZTL-GI interaction is strongly and specifically enhanced by blue light, through the amino-terminal flavin-binding LIGHT, OXYGEN OR VOLTAGE (LOV) domain of ZTL. Mutations within this domain greatly diminish ZTL-GI interactions, leading to strongly reduced ZTL levels. Notably, a C82A mutation in the LOV domain, implicated in the flavin-dependent photochemistry, eliminates blue-light-enhanced binding of GI to ZTL. These data establish ZTL as a blue-light photoreceptor, which facilitates its own stability through a blue-light-enhanced GI interaction. Because the regulation of GI transcription is clock-controlled, consequent GI protein cycling confers a post-translational rhythm on ZTL protein. This mechanism of establishing and sustaining robust oscillations of ZTL results in the high-amplitude TOC1 rhythms necessary for proper clock function.
Keywords
CLOCK-CONTROLLED GENE; ARABIDOPSIS-THALIANA; FLOWERING TIME; WHITE COLLAR-1; PROTEIN; BINDING; DEGRADATION; ENCODES; PHOTOTROPIN; EXPRESSION
URI
https://oasis.postech.ac.kr/handle/2014.oak/23172
DOI
10.1038/NATURE06132
ISSN
0028-0836
Article Type
Article
Citation
NATURE, vol. 449, no. 7160, page. 356 - 360, 2007-09-20
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

남홍길NAM, HONG GIL
Div of Integrative Biosci & Biotech
Read more

Views & Downloads

Browse