Open Access System for Information Sharing

Login Library

 

Article
Cited 55 time in webofscience Cited 57 time in scopus
Metadata Downloads

On the I-V measurement of dye-sensitized solar cell: Effect of cell geometry on photovoltaic parameters SCIE SCOPUS

Title
On the I-V measurement of dye-sensitized solar cell: Effect of cell geometry on photovoltaic parameters
Authors
Park, JKoo, HJYoo, BYoo, KKim, KChoi, WYPark, NG
Date Issued
2007-11-06
Publisher
ELSEVIER SCIENCE BV
Abstract
The effect of mask aperture size with respect to dye-adsorbed TiO2 area on the response of photocurrent, voltage, fill factor and efficiency of dye-sensitized solar cell (DSSC) was recently studied by Gratzel's research group [S. Ito, Md. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S.M. Zakeeruddin, M. Gratzel, Prog. Photovolt. Res. Appl. 14 (2006) 589], where it was proposed that overall efficiency could be overestimated when measuring a DSSC without mask having adequate aperture size. In this report, beside the aperture size, we have studied effects of glass substrate thickness and geometry, thickness and layer structure of TiO2 film on photovoltaic parameters. Photovoltaic parameters, mostly photocurrent density, were found to be significantly influenced by the glass substrate thickness and the TiO2 layer structure. Data analysis suggests that photovoltaic characteristics before and after mask are dependent not only on measuring condition such as mask aperture size but also on substrate thickness and TiO2 layer structure. (C) 2007 Elsevier B.V. All rights reserved.
Keywords
device masking; geometry; substrate thickness; dye-sensitized solar cell; CONVERSION EFFICIENCY; SCATTERING; PERFORMANCE; THICKNESS
URI
https://oasis.postech.ac.kr/handle/2014.oak/23154
DOI
10.1016/j.solmat.2007.06.002
ISSN
0927-0248
Article Type
Article
Citation
SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 91, no. 18, page. 1749 - 1754, 2007-11-06
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

최원용CHOI, WONYONG
Div of Environmental Science & Enginrg
Read more

Views & Downloads

Browse