Open Access System for Information Sharing

Login Library

 

Article
Cited 33 time in webofscience Cited 34 time in scopus
Metadata Downloads

Biokinetics in acidogenesis of highly suspended organic wastewater by adenosine 5 ' triphosphate analysis SCIE SCOPUS

Title
Biokinetics in acidogenesis of highly suspended organic wastewater by adenosine 5 ' triphosphate analysis
Authors
Yu, YHansen, CLHwang, S
Date Issued
2002-04-20
Publisher
JOHN WILEY & SONS INC
Abstract
In this paper, we pointed out the problems of using conventional volatile suspended solids (VSS) and chemical oxygen demand (COD) to evaluate biokinetic coefficients, especially for the treatment of highly suspended organic wastewater. We also introduced a novel approach to evaluate biokinetic coefficients by measurement of adenosine 5'-triphosphate (ATP) of microorganisms. The concept of using ATP analysis in biokinetic evaluations with highly suspended wastewater was shown to be effective. This study also showed that the conventional VSS and COD methods were strongly affected by incoming suspended organics in the wastewater and by biokinetics of microorganisms. A cheese-processing wastewater was used in evaluating the biokinetics of mesophilic acidogens. The concentration of COD and total suspended solids in the wastewater was 63.3 g/L and 12.4 g/L, respectively. The TSS was 23.6% of total solids concentration. A high ratio of VSS to total suspended solids of 96.7% indicated that most of the suspended particles were organic materials. Lactose and protein were the major organic components contributing COD in the wastewater, and a total of 94.2% of the COD in the a wastewater was due to the presence of lactose and protein. Two different physiological conditions where the maximum rates of acetate and butyrate production occurred were tested. These were pH 7 (condition A for acetate production) and pH 7.3 (condition B for butyrate production) at 36.2degreesC, respectively. Based on the molecular structures of the major organic substances and microbial ATP analysis, the residual substrate and microbial concentrations were stoichiometrically converted to substrate COD (SuCOD) and microbial VSS (MVSS), respectively, using correlation coefficients reported previously. These SuCOD and MVSS were simultaneously used to evaluate the biokinetic coefficients using Monod-based mathematical equations. The nonlinear least squares method with 95% confidence interval was used to evaluate biokinetic coefficients. The maximum microbial growth rate, mu(max) and half saturation coefficient, K-s, for conditions A and B were determined to be 9.9 +/- 0.3 and 9.3 +/- 1.0 day(-1) and 134.0 +/- 58.3 and 482.5 +/- 156.5 mg SuCOD/L, respectively. The microbial yield coefficient, Y, and microbial decay rate coefficient, k(d) for conditions A and B were determined to be 0.29 +/- 0.03 and 0.20 +/- 0.05 mg MVSS/mg SuCOD, and 0.14 +/- 0.05 and 0.25 +/- 0.05 day(-1), respectively. Specific substrate utilization rate at condition B was 43.8 +/- 20.6 mg SuCOD/mg MVSS/day, which was 31% higher than that at condition A. (C) 2002 Wiley Periodicals, Inc.
Keywords
acidogens; nonlinear parameter estimation; growth kinetics; adenosine 5 ' -triphosphate; cheese industry wastewater; suspended organic wastewater; 2-PHASE ANAEROBIC-DIGESTION; TREATING WHEY PERMEATE; ACTIVATED-SLUDGE; PROCESSING WASTES; WATER; ATP; REACTOR; FERMENTATION; QUANTIFICATION; ACIDIFICATION
URI
https://oasis.postech.ac.kr/handle/2014.oak/19155
DOI
10.1002/BIT.10164
ISSN
0006-3592
Article Type
Article
Citation
BIOTECHNOLOGY AND BIOENGINEERING, vol. 78, no. 2, page. 147 - 156, 2002-04-20
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

황석환HWANG, SEOK HWAN
Div of Environmental Science & Enginrg
Read more

Views & Downloads

Browse