Open Access System for Information Sharing

Login Library

 

Article
Cited 44 time in webofscience Cited 49 time in scopus
Metadata Downloads

X-ray absorption and NMR spectroscopic investigations of zinc glutarates prepared from various zinc sources and their catalytic activities in the copolymerization of carbon dioxide and propylene oxide SCIE SCOPUS

Title
X-ray absorption and NMR spectroscopic investigations of zinc glutarates prepared from various zinc sources and their catalytic activities in the copolymerization of carbon dioxide and propylene oxide
Authors
Kim, JSRee, MShin, TJHan, OHCho, SJHwang, YTBae, JYLee, JMRyoo, RKim, H
Date Issued
2003-08-15
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Abstract
The local and microstructures of zinc glutarates synthesized from various zinc sources were investigated by X-ray absorption and solid-state carbon-13 nuclear magnetic resonance spectroscopy, and related to their catalytic activities in the copolymerization of carbon dioxide and propylene oxide. It was found that the local structure around the Zn atoms of the zinc glutarate catalysts consists basically of tetrahedrally coordinated carboxyl oxygen atoms with a Zn-O bond distance in the range 1.95-1.96 Angstrom, and that the nearest neighbor Zn atom distance is 3.19-3.23 Angstrom. These results suggest that the catalysts have a network structure composed of layers interconnected by glutarate ligands. However, the first-shell structures of the catalysts tested are somewhat different, which might originate from differences in the catalysts' overall crystallinity and crystal quality (crystal size and perfection) produced by their different synthetic routes. The surface areas of the catalysts also varied with synthetic route. In the copolymerization, one catalyst with low surface area but the highest crystallinity and best crystal quality shows the highest catalytic activity, which is contrary to the usual expectation of increased catalytic activity with increased catalyst surface area. Therefore, the catalytic activities of zinc glutarates in the copolymerization seem to depend primarily on their morphological structures rather than on their surface areas. The surface areas of zinc glutarates may play a crucial role in improving the catalytic activity in the copolymerization when they first meet the morphological requirements (i.e., high crystallinity and crystal quality). (C) 2003 Elsevier Inc. All rights reserved.
Keywords
zinc glutarate catalyst; XANES; EXAFS; solid-state CP MAS C-13 NMR; copolymerization of CO2 with propylene oxide; NUCLEAR-MAGNETIC-RESONANCE; ALTERNATING COPOLYMERIZATION; POLY(PROPYLENE CARBONATE); FINE-STRUCTURE; CLIMATE-CHANGE; COMPLEXES; EPOXIDES; METAL; CO2; PHENOXIDES
URI
https://oasis.postech.ac.kr/handle/2014.oak/18465
DOI
10.1016/S0021-9517(03)00082-4
ISSN
0021-9517
Article Type
Article
Citation
JOURNAL OF CATALYSIS, vol. 218, no. 1, page. 209 - 219, 2003-08-15
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이문호REE, MOONHOR
Dept of Chemistry
Read more

Views & Downloads

Browse