Open Access System for Information Sharing

Login Library

 

Article
Cited 29 time in webofscience Cited 30 time in scopus
Metadata Downloads

PEI-g-PEG-RGD/Small Interference RNA Polyplex-Mediated Silencing of Vascular Endothelial Growth Factor Receptor and Its Potential as an Anti-Angiogenic Tumor Therapeutic Strategy SCIE SCOPUS

Title
PEI-g-PEG-RGD/Small Interference RNA Polyplex-Mediated Silencing of Vascular Endothelial Growth Factor Receptor and Its Potential as an Anti-Angiogenic Tumor Therapeutic Strategy
Authors
Kim, JKim, SWKim, WJ
Date Issued
2011-04
Publisher
MARY ANN LIEBERT INC
Abstract
Tumor angiogenesis appears to be achieved by the expression of vascular endothelial growth factor (VEGF) within solid tumors that stimulate host vascular endothelial cell mitogenesis and possibly chemotaxis. VEGF's angiogenic actions are mediated through its high-affinity binding to 2 endothelium-specific receptor tyrosine kinase, Flt-1 (VEGFR1), and Flk-1/KDR (VEGFR2). RNA interference-mediated knockdown of protein expression at the messenger RNA level provides a new therapeutic strategy to overcome various diseases. To achieve high efficacy in RNA interference-mediated therapy, it is critical to develop an efficient delivering system to deliver small interference RNA (siRNA) into tissues or cells site-specifically. We previously reported an angiogenic endothelial cell-targeted polymeric gene carrier, PEI-g-PEG-RGD. This targeted carrier was developed by the conjugation of the alpha nu beta 3/alpha nu beta 5 integrin-binding RGD peptide (ACDCRGDCFC) to the cationic polymer, branched polyethylenimine, with a hydrophilic polyethylene glycol (PEG) spacer. In this study, we used PEI-g-PEG-RGD to deliver siRNA against VEGFR1 into tumor site. The physicochemical properties of PEI-g-PEG-RGD/siRNA complexes was evaluated. Further, tumor growth profile was also investigated after systemic administration of PEI-g-PEG-RGD/siRNA complexes.
Keywords
TARGETED GENE DELIVERY; RETINAL NEOVASCULARIZATION; OCULAR NEOVASCULARIZATION; SYSTEMIC DELIVERY; TYROSINE KINASE; SIRNA DELIVERY; L-LYSINE; INHIBITION; EXPRESSION; CELLS
URI
https://oasis.postech.ac.kr/handle/2014.oak/17516
DOI
10.1089/OLI.2011.0278
ISSN
1545-4576
Article Type
Article
Citation
OLIGONUCLEOTIDES, vol. 21, no. 2, page. 101 - 107, 2011-04
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김원종KIM, WON JONG
Dept of Chemistry
Read more

Views & Downloads

Browse