Open Access System for Information Sharing

Login Library

 

Article
Cited 173 time in webofscience Cited 180 time in scopus
Metadata Downloads

High Efficiency Organic Solar Cells Based on Preformed Poly(3-hexylthiophene) Nanowires SCIE SCOPUS

Title
High Efficiency Organic Solar Cells Based on Preformed Poly(3-hexylthiophene) Nanowires
Authors
Kim, JSLee, JHPark, JHShim, CSim, MCho, K
Date Issued
2011-02-08
Publisher
WILEY-V C H VERLAG GMBH
Abstract
Bulk heterojunction solar cells based on blends of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PC61BM) are fabricated using self-assembled P3HT nanowires in a marginal solvent without post-treatments. The interconnected network structures of self-organized P3HT nanowires create continuous percolation pathways through the active layer and contribute to enhanced carrier mobility. The morphology and photovoltaic properties are studied as a function of ageing time of the P3HT precursor solution. Optimal photovoltaic properties are found at 60 h ageing time, which increases both light absorption and charge balance. Multilayered solar cells with a compositionally graded structure are fabriacted using preformed P3HT nanowires by inserting a pure P3HT donor phase onto the hole-collecting electrode. Applying optimized annealing conditions to the P3HT buffer layer achieves an enhanced hole mobility and a power conversion efficiency of 3.94%. The introduction of a compositionally graded device structure, which contains a P3HT-only region, reduces charge recombination and electron injection to the indium tin oxide (ITO) electrode and enhances the device properties. These results demonstrate that preformed semiconductor nanowires and compositionally graded structures constitute a promising approach to the control of bulk heterojunction morphology and charge-carrier mobility.
Keywords
POLYMER PHOTOVOLTAIC CELLS; CHARGE-TRANSPORT; PERFORMANCE; MORPHOLOGY; 3-HEXYLTHIOPHENE; DEPENDENCE; NETWORK; BLENDS
URI
https://oasis.postech.ac.kr/handle/2014.oak/17369
DOI
10.1002/adfm.201000971
ISSN
1616-301X
Article Type
Article
Citation
ADVANCED FUNCTIONAL MATERIALS, vol. 21, no. 3, page. 480 - 486, 2011-02-08
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조길원CHO, KIL WON
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse