Open Access System for Information Sharing

Login Library

 

Article
Cited 17 time in webofscience Cited 19 time in scopus
Metadata Downloads

The realistic prediction of oxygen transport in a tissue-engineered scaffold by introducing time-varying effective diffusion coefficients SCIE SCOPUS

Title
The realistic prediction of oxygen transport in a tissue-engineered scaffold by introducing time-varying effective diffusion coefficients
Authors
Kang, TYKang, HWHwang, CMLee, SJPark, JYoo, JJCho, DW
Date Issued
2011-09
Publisher
ELSEVIER SCI LTD
Abstract
An adequate oxygen supply is one of the most important factors needed in order to regenerate or engineer thick tissues or complex organs. To devise a method for maximizing the amount of oxygen available to cells, it is necessary to understand and to realistically predict oxygen transport within an engineered tissue. In this study, we focused on the fact that oxygen transport through a tissue-engineered scaffold may vary with time as cells proliferate. To confirm this viewpoint, effective oxygen diffusion coefficients (D-e,D-s) of scaffolds were deduced from experimental measurements and simulations of oxygen-concentration profiles were performed using these D-e,D-s values in a two-dimensional (2-D) perfusion model. The results of this study indicate that higher porosity, hydraulic permeability and interconnectivity of scaffolds with no cells are responsible for the prominent diffusion capability quantified using D-e,D-s. On the other hand, the D-e,D-s of scaffolds with cells has a negative linear relationship with cell density. Cell proliferation with time leads to a significant decrease in oxygen concentration in the 2-D perfusion model. This result demonstrates the gradual restriction of oxygen transport in a porous scaffold during cell culture. Therefore, the realistic prediction of oxygen transport using a time-varying D-e,D-s will provide an appropriate basis for designing optimal transport networks within a thick scaffold. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Keywords
Scaffold; Oxygen transport; Tissue engineering; Mathematical modeling; Diffusion coefficient; MODEL; BONE; FABRICATION; NETWORK; CULTURE; SKIN
URI
https://oasis.postech.ac.kr/handle/2014.oak/17080
DOI
10.1016/J.ACTBIO.2011.05.015
ISSN
1742-7061
Article Type
Article
Citation
ACTA BIOMATERIALIA, vol. 7, no. 9, page. 3345 - 3353, 2011-09
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

박재성PARK, JAE SUNG
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse