Open Access System for Information Sharing

Login Library

 

Article
Cited 29 time in webofscience Cited 33 time in scopus
Metadata Downloads

Role of ionic chlorine in the thermal degradation of metal chloride-doped graphene sheets SCIE SCOPUS

Title
Role of ionic chlorine in the thermal degradation of metal chloride-doped graphene sheets
Authors
Ki Chang KwonBuem Joon KimLee, JLSoo Young Kim
Date Issued
2013-01
Publisher
ROYAL SOCIETY OF CHEMISTRY
Abstract
The degradation mechanism of graphene sheets doped with metal chloride was investigated as a function of the annealing process. The sheet resistance of doped graphene increased from 500-700 Omega sq(-1) to 10 k Omega sq(-1) and the transmittance at 550 nm decreased from 95% to 87-91% after annealing at 400 degrees C. Furthermore, the work function of doped graphene decreased from 4.7-5.1 eV to 4.2-4.5 eV after annealing. The G and 2D band peaks in the Raman spectra were shifted to lower wavenumbers by annealing at 400 degrees C, regardless of the kind of dopant, and reached nearly the same level as that of the pristine graphene. X-ray photoemission spectroscopy showed that the chlorine anions and chlorine atoms disappeared after thermal annealing. The scanning electron microscopy images revealed the capability of annealing to gather the unstable metal cations, thereby inducing the aggregation of metal particles. The degree of doping of the graphene sheets was strongly related to not only metal cations but also chlorine anions. Therefore, aggregation of metal particles and adsorption of chlorine ions degraded the properties of graphene as a function of annealing temperature.
Keywords
CARBON NANOTUBES; LARGE-AREA; FILMS; ELECTRODES; GRAPHITE; NITROGEN; BORON
URI
https://oasis.postech.ac.kr/handle/2014.oak/16213
DOI
10.1039/C2TC00008C
ISSN
2050-7526
Article Type
Article
Citation
JOURNAL OF MATERIAL CHEMISTRY C, vol. 1, no. 2, page. 253 - 259, 2013-01
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이종람LEE, JONG LAM
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse