Open Access System for Information Sharing

Login Library

 

Article
Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Seeing inside materials by aberration-corrected electron microscopy SCIE SCOPUS

Title
Seeing inside materials by aberration-corrected electron microscopy
Authors
Pennycook, SJvan Benthem, KMarinopoulos, AGOh, SHMolina, SIBorisevich, AYLuo, WPantelides, ST
Date Issued
2011-10
Publisher
Indersciene Publishers
Abstract
The recent successful correction of lens aberrations in the electron microscope has improved resolution by more than a factor of two in just a few years, bringing many benefits for the study of materials. These benefits extend significantly beyond enhanced resolution alone. Aberration correction gives higher resolution by allowing the objective lens to have a wider aperture, which also results in a reduced depth of field. This effect can be used to only focus specific sections inside materials for the first time. In this contribution we describe recent results exploiting this capability. Additionally, we show how combining the microscopy data with first-principles theory gives new insights into materials properties. We cover two applications, both involving heavy atoms in a lighter host. The first shows how single Hf atoms can be mapped in three dimensions inside the 1 nm-wide SiO2 region of a high dielectric constant device structure, and how a link to macroscopic device properties results through theoretical calculations. The second example is from the field of nanoscience, where individual Au atoms are imaged inside Si nanowires grown by a vapour-liquid-solid mechanism. The majority of Au atoms are probably injected by the highly energetic electron beam. However, their observed sites and atomic configurations represent at least meta-stable configurations and match well to results from density functional calculations.
Keywords
scanning transmission electron microscopy; aberration correction; Z-contrast; semiconductor devices; nanowires; point defects; ATOMS; SI-SIO2; ORIGIN; SI
URI
https://oasis.postech.ac.kr/handle/2014.oak/15798
DOI
10.1504/IJNT.2011.044438
ISSN
1475-7435
Article Type
Article
Citation
International Journal of Nanotechnology, vol. 8, no. 10-12, page. 935 - 947, 2011-10
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

오상호OH, SANG HO
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse