Open Access System for Information Sharing

Login Library

 

Article
Cited 26 time in webofscience Cited 28 time in scopus
Metadata Downloads

Electrical Transport through Single Nanowires of Dialkyl Perylene Diimide SCIE SCOPUS

Title
Electrical Transport through Single Nanowires of Dialkyl Perylene Diimide
Authors
Beom Joon KimHojeong YuOh, JHMoon Sung KangJeong Ho Cho
Date Issued
2013-05-23
Publisher
American Chemical Society
Abstract
We investigated electrical charge transport through individual strands of single-crystalline dipentyl perylene tetracarboxylic diimide (PTCDI-C-5) and dioctyl perylene tetracarboxylic diimide (PTCDI-C-8) nanowires prepared by a solution-phase self assembly method. Temperature dependent mobility measurements (100-280 K) revealed distinct electrical transport characteristics in the two types of nanowires. The PTCDI-C-8 nanowire having shorter intermolecular distances exhibited a transition in the electrical transport mechanism from a thermally activated process (the multiple-trap-and-release model) to a band-like transport (the signature of excellent electrical conduction) with increasing temperature. In contrast, the transport through the PTCDI-C-5 nanowire was mostly determined by thermally activated behavior. The observation of band like transport in the PTCDI-C-8 nanowire was attributed to the small number of charge traps in the constituent molecules. Meanwhile, band like transport was hardly attainable in the PTCDI-C-5 nanowire due to the presence of a large number of charge traps, which followed an exponential energy distribution. Unlike the case of the single crystal PTCDI-C-8 nanowire, thin films of polycrystalline PTCDI-C-8 contained significant numbers of exponentially distributed charge traps. Consequently, band like transport was not observed Overall, our results presented here demonstrate the importance of attaining good molecular ordering and orientation within the electrically active molecular layer with a high electronic purity for achieving superior electrical transport, i.e., band-like transport.
Keywords
FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; MEYER-NELDEL RULE; ORGANIC TRANSISTORS; CHARGE-TRANSPORT; MOLECULAR PACKING; CRYSTALS; PERFORMANCE; SEMICONDUCTOR; TEMPERATURE
URI
https://oasis.postech.ac.kr/handle/2014.oak/14394
DOI
10.1021/JP400807T
ISSN
1932-7447
Article Type
Article
Citation
JOURNAL OF PHYSICAL CHEMISTRY C, vol. 117, no. 20, page. 10743 - 1074, 2013-05-23
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

오준학OH, JOON HAK
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse