Open Access System for Information Sharing

Login Library

 

Article
Cited 24 time in webofscience Cited 28 time in scopus
Metadata Downloads

Tip Clearance Effects on Cavitation Evolution and Head Breakdown in Turbopump Inducer SCIE SCOPUS

Title
Tip Clearance Effects on Cavitation Evolution and Head Breakdown in Turbopump Inducer
Authors
Kim, SChoi, CKim, JPark, JBaek, J
Date Issued
2013-11
Publisher
AMER INST AERONAUTICS ASTRONAUTICS
Abstract
The objectives of the present study were to investigate the effects of tip clearance on cavitation performance and flow characteristics in a turbopump inducer by using computational fluid dynamics. Three different tip clearances were analyzed under design (Q(d)) and off-design (0.8Q(d) and 1.2Q(d)) cavitating conditions. The Rayleigh-Plesset model was implemented in ANSYS CFX 13.0 by using rate equation controlling vapor generation and condensation in the context of two-phase one-fluid analysis to calculate the cavitating flows. Numerical results in this study were validated by comparison with experimental results for suction performance. Cavitation inception occurs at the leading edge of the blade tip. For high cavitation numbers, the static pressure under cavitating conditions is almost the same as that under noncavitating conditions because tip vortex cavitation and tip leakage vortex cavitation do not affect the flow significantly or deteriorate the overall performance. Tip vortex cavitation and tip leakage vortex cavitation tend to become large for small tip clearances at the low flow rate. However, long blade cavitation develops for large tip clearances and obstructs the throat between two adjacent blades; such cavitation results in head breakdown at high cavitation numbers for large tip clearances. Further, at the high flow rate, head breakdown occurs at high cavitation numbers due to abrupt obstruction at the throat by blade cavitation on the pressure side as well as on the suction side.
Keywords
VORTEX STRUCTURE; PERFORMANCE; SIMULATION; INCEPTION; BACKFLOW; FLOWS; INLET
URI
https://oasis.postech.ac.kr/handle/2014.oak/14167
DOI
10.2514/1.B34766
ISSN
0748-4658
Article Type
Article
Citation
JOURNAL OF PROPULSION AND POWER, vol. 29, no. 6, page. 1357 - 1366, 2013-11
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse