Open Access System for Information Sharing

Login Library

 

Article
Cited 11 time in webofscience Cited 12 time in scopus
Metadata Downloads

Synthesis and characterization of an exact comb polyisoprene with three branches having the middle branch twice the molecular weight of the other two identical external branches SCIE SCOPUS

Title
Synthesis and characterization of an exact comb polyisoprene with three branches having the middle branch twice the molecular weight of the other two identical external branches
Authors
Ratkanthwar, KHadjichristidis, NikosLee, SanghoonChang, TPudukulathan, ZubaidhaVlassopoulos, Dimitris
Date Issued
2013-12-07
Publisher
Royal Society of Chemistry
Abstract
An exact comb polyisoprene (PI) with three branches, with the middle branch having twice the molecular weight of the two other identical external branches, was synthesized by using anionic polymerization high vacuum techniques and appropriate chlorosilane chemistry. The synthetic approach involves (a) the selective replacement of the two chlorines of 4-(dichloromethylsilyl)diphenylethylene (DCMSDPE, key molecule) with identical PI chains by titration with PILI, (b) the addition of sec-BuLi to the double bond of DPE followed by the polymerization of isoprene from the newly created anionic site to form a 3-arm living star PI, (c) the selective replacement of the two chlorines of trichloromethylsilane with 3-arm star PI to form an H-shape intermediate, and (d) the replacement of the remaining chlorine of trichloromethylsilane by linear PI chains with double the molecular weight. All intermediate and final products were characterized via size exclusion chromatography, temperature gradient interaction chromatography and H-1-NMR spectroscopy. As expected, due to the inability to control the exact stoichiometry of the linking reactants, the main product (exact comb PI) is contaminated by a few by-products, despite the fact that anionic polymerization is the most efficient way to produce well-defined polymers.
URI
https://oasis.postech.ac.kr/handle/2014.oak/12712
DOI
10.1039/C3PY00848G
ISSN
1759-9954
Article Type
Article
Citation
POLYMER CHEMISTRY, vol. 4, no. 23, page. 5645 - 5655, 2013-12-07
Files in This Item:

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse