Open Access System for Information Sharing

Login Library

 

Article
Cited 8 time in webofscience Cited 7 time in scopus
Metadata Downloads

SHISA5/SCOTIN restrains spontaneous autophagy induction by blocking contact between the ERES and phagophores SCIE SCOPUS

Title
SHISA5/SCOTIN restrains spontaneous autophagy induction by blocking contact between the ERES and phagophores
Authors
YOO, JOO YEON이지은
Date Issued
2022-07
Publisher
Landes Bioscience
Abstract
The phagophore expands into autophagosomes in close proximity to endoplasmic reticulum (ER) exit sites (ERESs). Here, we propose that a single-pass ER transmembrane protein, SHISA5/SCOTIN, acts as an autophagy suppressor under basal condition by blocking the contact between the phagophore and ERES. HeLa cells lacking SHISA5 displayed higher levels of macroautophagy/autophagy. The enhanced autophagy in SHISA5 KO cells requires class III phosphatidylinositol 3-kinase complex I (PtdIns3K-C1) activity and functional assembly of ERES, but not ULK1 activity. A proximity ligation assay (PLA) of SEC16A (Sec16 homolog A, endoplasmic reticulum export factor)-WIPI2 (WD repeat domain, phosphoinositide interacting 2) and SEC31A (Sec31 homolog A, COPII coat complex component)-MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) demonstrated that contact between the ERES and phagophore increased in SHISA5 KO cells, and the cytosolic domain of SHISA5 was sufficient to rescue this phenotype. Close proximity between ERES and phagophore in SHISA5 KO cells was also visualized by performing an ultrastructure correlative image analysis of SEC31A associated with LC3-positive membranes. Furthermore, we observed that SHISA5 was located near ERES under basal conditions, but displaced away from ERES under autophagy-inducing conditions. These data suggest that SHISA5 functions to block spontaneous contact between ERES and phagophore, and the blockage effect of SHISA5 should be relieved for the proper induction of autophagy.
URI
https://oasis.postech.ac.kr/handle/2014.oak/110303
DOI
10.1080/15548627.2021.1994297
ISSN
1554-8627
Article Type
Article
Citation
Autophagy, vol. 18, no. 7, page. 1613 - 1628, 2022-07
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

유주연YOO, JOO YEON
Dept of Life Sciences
Read more

Views & Downloads

Browse