Open Access System for Information Sharing

Login Library

 

Article
Cited 3 time in webofscience Cited 2 time in scopus
Metadata Downloads

Development of a nitinol-actuated surgical instrument for laparoscopic renal denervation: feasibility test in a swine survival model SCIE SCOPUS

Title
Development of a nitinol-actuated surgical instrument for laparoscopic renal denervation: feasibility test in a swine survival model
Authors
BAIK, JIN HWANDONGHYUN, YIMDONGHYUNSangyong, LeeSunchoel, YangChang Wook, JeongSung-min, Park
Date Issued
2020-01
Publisher
TAYLOR & FRANCIS LTD
Abstract
Purpose:In this study, we developed a novel nitinol-actuated surgical instrument to conduct laparoscopic renal denervation for the treatment of resistant hypertension. We investigated whether shape and temperature settings of nitinol specimens fit well into the design goals. Furthermore, we conducted a pilot study to validate the mechanical and physiological performance of nerve ablation without damaging the renal artery. Method:Tensile tests were performed to observe temperature-dependent thermomechanical properties and the original shape of nitinol specimens was set considering our design goal. We performed strain gage experiments to measure bending strain. We developed surgical instrument and operated laparoscopic renal denervation in a swine model. Subsequent impedance spectroscopy experiments were conducted to measure changes in impedance magnitudes during the operation and histological analyses were performed to visualize thermogenic damage to arteries and nerves. Results:Tensile testing showed that the shape memory effect begins above 37 degrees C. Measured strains on nitinol surfaces were 2.10% +/- 0.769%, below the strain limit of 8%. Impedance spectroscopy experiments showed decreases in magnitude in all six trials. After operation of laparoscopic renal denervation following the protocol, renal arteries and nerves were harvested and thermogenic damage was observed in nerves but not arteries. Conclusion:We developed a novel nitinol-actuated surgical instrument with which to perform laparoscopic renal denervation. The feasibility of our device was verified using thermomechanical analyses of nitinol, and assessments of mechanical and physiological performance. Our device could be used in other laparoscopic procedures that require large degrees of freedom while restricting to trocar size.
URI
https://oasis.postech.ac.kr/handle/2014.oak/106713
DOI
10.1080/02656736.2020.1767806
ISSN
0265-6736
Article Type
Article
Citation
INTERNATIONAL JOURNAL OF HYPERTHERMIA, vol. 37, no. 1, page. 573 - 584, 2020-01
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse