Open Access System for Information Sharing

Login Library

 

Article
Cited 30 time in webofscience Cited 30 time in scopus
Metadata Downloads

Electrically focus-tuneable ultrathin lens for high-resolution square subpixels SCIE SCOPUS

Title
Electrically focus-tuneable ultrathin lens for high-resolution square subpixels
Authors
Park, SehongLee, GilhoPark, ByeonghoSeo, YounghoPark, Chae binChun, Young TeaJoo, ChulminRho, JunsukKim, Jong MinHone, JamesJun, Seong Chan
Date Issued
2020-06
Publisher
NATURE PUBLISHING GROUP
Abstract
Owing to the tremendous demands for high-resolution pixel-scale thin lenses in displays, we developed a graphene-based ultrathin square subpixel lens (USSL) capable of electrically tuneable focusing (ETF) with a performance competitive with that of a typical mechanical refractive lens. The fringe field due to a voltage bias in the graphene proves that our ETF-USSL can focus light onto a single point regardless of the wavelength of the visible light-by controlling the carriers at the Dirac point using radially patterned graphene layers, the focal length of the planar structure can be adjusted without changing the curvature or position of the lens. A high focusing efficiency of over 60% at a visible wavelength of 405 nm was achieved with a lens thickness of <13 nm, and a change of 19.42% in the focal length with a 9% increase in transmission was exhibited under a driving voltage. This design is first presented as an ETF-USSL that can be controlled in pixel units of flat panel displays for visible light. It can be easily applied as an add-on to high resolution, slim displays and provides a new direction for the application of multifunctional autostereoscopic displays.
URI
https://oasis.postech.ac.kr/handle/2014.oak/105599
DOI
10.1038/s41377-020-0329-5
ISSN
2047-7538
Article Type
Article
Citation
LIGHT-SCIENCE & APPLICATIONS, vol. 9, no. 1, 2020-06
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

노준석RHO, JUNSUK
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse