Open Access System for Information Sharing

Login Library

 

Article
Cited 48 time in webofscience Cited 49 time in scopus
Metadata Downloads

Mesoporous carbon host material for stable lithium metal anode SCIE SCOPUS

Title
Mesoporous carbon host material for stable lithium metal anode
Authors
Jeong J.Chun J.Lim W.-G.Kim W.B.Jo C.Lee J.
Date Issued
2020-06-14
Publisher
NLM (Medline)
Abstract
Lithium (Li) metal is a promising anode material for next-generation batteries because of its low standard reduction potential (-3.04 V vs. SHE) and high specific capacity (3860 mA h g-1). However, it is still challenging to directly use Li metal as anode material in commercial batteries because of unstable Li dendrite formation and accumulated solid-electrolyte interphase. Possible methods that can suppress the unwanted formation of Li dendrites are (i) by increasing the electrode surface area and (ii) formation of porosity for confining Li. Here, we tested microporous (<2 nm) carbon and mesoporous (2-50 nm) carbon as host materials for the Li metal anode to avoid their degradation during cycling of lithium metal batteries (LMBs). Mesoporous carbon was more effective than microporous carbon as a host material to confine the Li metal and the lifetime of mesoporous carbon was more than twice as long as those of the Cu foil and microporous carbon. After confirmed better anode performance of mesoporous carbon host material, we applied Li-plated mesoporous carbon as an anode in a lithium-sulfur battery (Li-S) full cell. This research work suggests that mesopores, in spite of their low specific surface area, are better than micropores in stabilizing the Li metal and that a mesoporous host material can be applied to Li metal anodes for use in next-generation battery applications.
URI
https://oasis.postech.ac.kr/handle/2014.oak/105224
DOI
10.1039/d0nr02258f
ISSN
2040-3364
Article Type
Article
Citation
Nanoscale, vol. 12, no. 22, page. 11818 - 11824, 2020-06-14
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse