Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Emerging Materials for Neuromorphic Devices and Systems

Title
Emerging Materials for Neuromorphic Devices and Systems
Authors
Kim, M.-K.Park, Y.Kim, I.-J.Lee, J.-S.
Date Issued
Dec-2020
Publisher
CELL PRESS
Abstract
Neuromorphic devices and systems have attracted attention as next-generation computing due to their high efficiency in processing complex data. So far, they have been demonstrated using both machine-learning software and complementary metal-oxide-semiconductor-based hardware. However, these approaches have drawbacks in power consumption and learning speed. An energy-efficient neuromorphic computing system requires hardware that can mimic the functions of a brain. Therefore, various materials have been introduced for the development of neuromorphic devices. Here, recent advances in neuromorphic devices are reviewed. First, the functions of biological synapses and neurons are discussed. Also, deep neural networks and spiking neural networks are described. Then, the operation mechanism and the neuromorphic functions of emerging devices are reviewed. Finally, the challenges and prospects for developing neuromorphic devices that use emerging materials are discussed.
URI
http://oasis.postech.ac.kr/handle/2014.oak/105007
ISSN
2589-0042
Article Type
Article
Citation
Iscience, vol. 23, no. 12, 2020-12
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이장식LEE, JANG SIK
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse