Open Access System for Information Sharing

Login Library

 

Article
Cited 37 time in webofscience Cited 40 time in scopus
Metadata Downloads

Human influence on frequency of temperature extremes SCIE SCOPUS

Title
Human influence on frequency of temperature extremes
Authors
Hu, TingSun, YingZhang, XuebinMin, Seung-KiKim, Yeon-Hee
Date Issued
2020-06
Publisher
IOP PUBLISHING LTD
Abstract
We investigate the influence of external forcings on the frequency of temperature extremes over land at the global and continental scales by comparing HadEX3 observations and simulations from the Coupled Model Intercomparison Programme Phase 6 (CMIP6) project. We consider four metrics including warm days and nights (TX90p and TN90p) and cold days and nights (TX10p and TN10p). The observational dataset during 1951-2018 shows continued increases in the warm days and nights and decreases in the cold days and nights in most land areas in the years after 2010. The area of the so-called 'warming hole' in North America is much reduced in 1951-2018 compared with that in 1951-2010. The comparison between observation and simulations based on an optimal fingerprinting method shows that the anthropogenic forcing, dominated by greenhouse gases, plays the most important role in the changes of the frequency indices. Changes in CMIP6 multi-model mean response to all forcing need to be scaled down to best match the observations, indicating that the multi-model ensemble mean may have overestimated the observed changes. Analyses that involve signals from anthropogenic and natural external forcings confirm that the anthropogenic signal can be detected over global land as a whole and for most continents in all temperature indices. Analyses that include signals from greenhouse gas (GHG), anthropogenic aerosol (AA) and natural external (NAT) forcings show that the GHG signal is detected in all indices over the globe and most continents while the AA signal can be detected mainly in the warm extremes but not the cold extremes over the globe and most continents. The effect of NAT is negligible in most land areas. GHG's warming effect is offset partially by AA's cooling effect. The combined effects from both explain most of the observed changes over the globe and continents.
URI
https://oasis.postech.ac.kr/handle/2014.oak/103877
DOI
10.1088/1748-9326/ab8497
ISSN
1748-9326
Article Type
Article
Citation
ENVIRONMENTAL RESEARCH LETTERS, vol. 15, no. 6, 2020-06
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

민승기MIN, SEUNG KI
Div of Environmental Science & Enginrg
Read more

Views & Downloads

Browse