Open Access System for Information Sharing
All
Title
Author
Subject
Login
Library
Help
검색
HOME
Communities & Collections
Researchers
Title
Browse by Researchers
HWANG, WOON BONG (황운봉)
Dept of Mechanical Engineering(기계공학과)
Field(s)
E-Mail
Homepage
Loading...
Export
Journal Papers
(International)
Journal Papers
(Domestic)
Conference Papers
(International)
Conference Papers
(Domestic)
Journal Papers(International)
Journal Papers(Domestic)
Conference Papers(International)
Conference Papers(Domestic)
20 items
100 items
200 items
Show more items...
Keyword
FABRICATION:23||WETTABILITY:11||NANOWIRE ARRAYS:10||COMMUNICATION:9||microstrip antenna:9||TECHNOLOGY:9||FILM:8||DESIGN:7||ANODIC ALUMINUMOXIDE:7||SURFACES:7||FILMS:7||THINFILMS:6||nanoindentation:6||POROUS ALUMINA:6||honeycomb:6||WINDING ANGLE:6||MEMBRANES:6||HARDNESS:6||SAS:6||nanohoneycomb:6||ANODIC ALUMINA:6||sandwich structure:6||MICROSTRIP ANTENNAS:5||SUPERHYDROPHOBIC SURFACES:5||HEXAGONAL PORE ARRAYS:5||strength:5||CONTACTANGLE:5||ARRAYS:5||atomic force microscopy:5||SUBSTRATE:5||failure index:5||TEMPLATE:5||MECHANICALPROPERTIES:5||composite:5||STRESS:5||genetic algorithm:5||SINGLECRYSTAL SILICON:4||OPTIMIZATION:4||DEPTH:4||OXIDE:4||anodization:4||fiber reinforced plastics (FRP):4||friction:4||LITHOGRAPHY:4||optimum design:4||adhesion:4||antenna:4||BENDING TEST:4||POLYELECTROLYTE MULTILAYERS:4||SURFACE:4||LOAD:4||nanohoneycomb structure:4||AFM:4||bending fatigue:4||WATER:4||SMART SKIN STRUCTURES:4||PLATES:4||NANOSCALE STRUCTURES:4||NANOINDENTATION:4||SINGLECRYSTALS:4||STRENGTH:4||COMPOSITE:4||INTERMEDIATE TEMPERATURES:4||BEHAVIOR:3||FRICTION:3||TORSION:3||Anodic aluminum oxide:3||Hydrophobicity:3||LAYER:3||Nomex honeycomb:3||SILICON:3||characteristic length:3||surface antenna structure:3||POLYMER:3||sandwich structures:3||smart structure:3||TOPOGRAPHY:3||NANOWIRES:3||surfaceantennastructure:3||DAMAGE MECHANICS:3||MODEL:3||composites:3||composite laminate:3||DEFORMATION:3||TANTALA:3||wetting:3||INTEGRATION:3||ACTUATORS:3||CANTILEVERS:3||ALUMINUM:3||MICROSTRIP ANTENNA:3||PRINTEDCIRCUIT ANTENNAS:3||OPTIMUM DESIGN:3||LAMINATE:3||Superhydrophilic surface:2||AMMONIUM PARATUNGSTATE:2||electrospun nanofiber:2||NEMATOSTELLAVECTENSIS:2||SAR:2||scanning electron microscopy (SEM):2||tensile coupon:2||failure criterion:2||artificial neural networks (ANN):2||depthdependent hardness:2||calibration:2||bending test:2||Nanogenerator:2||SUPERHYDROPHOBIC SURFACE:2||Smart structure:2||Nanofiber:2||THERMALDECOMPOSITION:2||MESOCELLULAR CARBON FOAM:2||BINDER:2||Polyurethane mold:2||Cell aggregates:2||ESCHERICHIACOLI:2||fibermetal laminate:2||carbon/epoxy composites:2||DELAMINATION:2||PRESTANDARDIZATION:2||graphite/epoxy:2||biaxial loading:2||NanoUTM:2||bearing strength:2||pin loading:2||Young&apos:2||genetic algorithms:2||Size effect:2||porous material:2||AAO (anodic aluminum oxide):2||Van der Waals interaction:2||Nanogenerators:2||COATINGS:2||PERFORMANCE ANODE MATERIALS:2||AMORPHOUS WO3:2||electrical performance:2||dualband antenna:2||SATELLITE:2||smart skin structure:2||natural frequency:2||delamination:2||crack propagation direction:2||GLASSEPOXY COMPOSITE:2||CFRP:2||failure mechanism:2||microstructure:2||PRESSURE:2||cureinplace:2||stress/strain curves:2||STRAIN:2||CARBON NANOTUBES:2||WIRE:2||SENSING INDENTATION:2||surface energy:2||strain gradient plasticity:2||STRAINGRADIENT PLASTICITY:2||MODULUS:2||Nanopillar:2||NANOSTRUCTURED SURFACES:2||NANOPILLAR ARRAYS:2||Aluminum coatings:2||MESOPOROUS CARBON:2||marine silk fibers:2||repair:2||strength recovery:2||FORCE MICROSCOPE:2||failure mode:2||s modulus:2||nanouniversal testing machine:2||anodic alumina:2||size effect:2||Flow stress:2||GND:2||ATOMICFORCE MICROSCOPY:2||PATCH ANTENNA:2||Electrostatic induction:2||STAMP DEFORMATION:2||Liquids:2||ELECTROCHEMICAL ENERGYSTORAGE:2||Polystyrene:2||wetspun fiber:2||SPIDER SILK:2||SUPERHYDROPHOBICITY:2||Composite surface antenna:2||micro strip antenna:2||SHELLS:2||EMBEDDED ACTUATORS:2||COMPOSITE PLATES:2||MODEI:2||AAO:2||threepoint bending fatigue:2||solidliquid interfaces:2||tensile test:2||CARBON:2||FORCE MICROSCOPY:2||ATOMICFORCE:2||microwave absorber:2||Superhydrophobicity:2||Hot embossing:2||Microchamber/nanodimple (MCND):2||Microindented nanodimpleanodic aluminum oxide (MNAAO):2||sea anemone:2||BIOMATERIALS:2||impact behavior:2||GENETIC ALGORITHM:2||fractography:2||fatigue life:2||fatigue strength reduction factor:2||GOLD:2||MAGNETICPROPERTIES:2||REPLICATION:2||NANOSTRUCTURES:2||MICROCHANNELS:2||Taguchi method:2||PURIFICATION:2||frequency response function:2||carbonfiberreinforced plastics (CFRP):2||biaxial strength:2||nanoUTM:2||MEMS MATERIALS:2||OXIDE FILMS:2||anodic aluminum oxide:2||mechanical properties:2||atomic force microscope:2||LOTUSLEAF:2||Strain gradient plasticity:2||OXIDATIONSTATES:2||recombinant silk proteins:2||buckling:2||GAIN ENHANCEMENT METHODS:2||LIFE PREDICTION:2||interfacial ply orientation:2||FAILURE:2||COMBINED EXTERNALPRESSURE:2||carbon/epoxy:2||RADIATED FIELD:2||SUPERSTRATE:2||ANODIC ALUMINA MEMBRANES:2||TENSILE:2||Surface tension:2||lotus leaf:1||micro/nanostructures:1||higher mode deformation:1||fatigue life prediction:1||CELL ENCAPSULATION:1||TRANSPLANTATION:1||MICROFLUIDICS:1||Surface wettability:1||Separation:1||Contact Electrification:1||Rheological property:1||Personal computers:1||Drop breakup:1||Anodizations:1||Liquid droplets:1||Triboelectricity:1||Selfpowered systems:1||Integrated circuits:1||BEAM:1||twist angle:1||YOUNGS MODULUS:1||C60:1||fiber metal laminates (FML):1||COMPOSITEMATERIALS:1||GENETICALGORITHM:1||Electrical properties:1||anodic alumina oxide:1||polymer sticking:1||Surface Antenna Structure:1||cumulative damage:1||ANGLE:1||SILICON MEMBRANES:1||HYPOXIA:1||Industrial processs:1||Selfassembled monolayer coatings:1||WICKING:1||Electric utilities:1||Coatings:1||Air conditioning industry:1||Cleaning properties:1||Iterative methods:1||Spherical droplets:1||DC voltage:1||Electrical poling:1||SOLUTIONIMMERSION PROCESS:1||OIL/WATER SEPARATION:1||Anodization:1||PORTABLE ELECTRONICS:1||VAPORDEPOSITION:1||Sodium bicarbonate:1||ZINC:1||PEM FUELCELL:1||PART I:1||MANAGEMENT:1||TRANSPORT:1||SENSOR:1||TRANSPARENT:1||triboelectric nanogenerator:1||methyl orange:1||honeycomb sandwich beams:1||TRANSVERSELY FLEXIBLE CORE:1||PANELS:1||smart structures:1||end notched flexure (ENF):1||JAPAN:1||structural system reconstruction:1||modal parameter estimation:1||damping ration:1||interlaminar fracture:1||design sensitivity:1||loadcarrying efficiency index:1||Weibull distribution:1||carbon/epoxy composite (CFRP):1||FATIGUE:1||GAUGES:1||lateral force calibration factor:1||TORSIONAL SPRING CONSTANT:1||COMPOSITE SMART STRUCTURES:1||Anodic aluminum oxide (AAO):1||SIDELOBE REDUCTION:1||RADIATION:1||phased array:1||MILITARY AIRCRAFT:1||actuator:1||shape control:1||PAPER:1||FOG:1||CONDENSATION:1||Surface roughness:1||Moist environment:1||Topography:1||Nanotechnology:1||ARRAY:1||OIL SEPARATION:1||MECHANISMS:1||Superhydrophilic:1||Slip length:1||SLIP:1||LOTUS LEAF:1||Purging:1||superhdrophobicity:1||Sandblasting:1||EFFICIENCY:1||cracktip splitting:1||ORTHOTROPIC PLATES:1||IDENTIFICATION:1||ELEMENT:1||residual energy:1||axial contraction of CFRP tube:1||lateral force calibration:1||PATTERN:1||phased arrays:1||CALIBRATION:1||Selfcleaning:1||Honeycomb:1||Antenna arrays:1||phase error:1||SPIRAL ANTENNA:1||INSULINSECRETION:1||NANOFLUIDIC INTERCONNECTS:1||Packed beds:1||Nanohole structures:1||Separation systems:1||DIOXIDE TIO2:1||Cleaning:1||Fins (heat exchange):1||Surface properties:1||Brazed aluminum heat exchangers:1||Superhydrophobic coatings:1||Nanoimprinting process:1||PATTERNRECONFIGURABLE ANTENNA:1||Plasma etch:1||Low maintenance energy:1||SURFACECHEMISTRY:1||Flexible superhydrophobic surface:1||REMOVAL:1||Cassie relation:1||SUPERHYDROPHILICITY:1||parallel:1||energy harvesting:1||Hybrid energy cell:1||debonding:1||SPECIMENS:1||STATIC INDENTATION:1||GRAPHITE EPOXY:1||state space method:1||FAILURE CRITERIA:1||robust nanogenerators:1||serial integration:1||alumina nanowire:1||pyroelectric nanogenerator:1||ELECTROCHEMICAL OXIDATION:1||DELAMINATED BEAMS:1||VIBRATIONS:1||MECHANICS:1||ELASTICCONSTANTS:1||VIBRATION:1||strain energy release rate:1||UNDERSTANDING DAMAGE MECHANISMS:1||TOUGHNESS TEST:1||angle conversion factor:1||DELAMINATION GROWTH:1||Superhydrophobicity:1||Antenna:1||antenna radiation pattern synthesis:1||MOVING VEHICLES:1||Composite:1||PROGRAM:1||carbon/epoxy laminates:1||multiaxial loading:1||OPTIMALDESIGN:1||Liquid separation:1||LIQUIDDROPS:1||Micro/nano:1||Fabrication:1||Heat exchangers:1||Monolayers:1||Surface analysis:1||Automation:1||Timing circuits:1||Dualscale:1||Superhydrophobic surface:1||Different wettability:1||Defrosting:1||NUCLEATION:1||Water removal:1||DIAGNOSTICTOOLS:1||DRIVEN:1||SYSTEM:1||selfassembly method:1||ALUMINA:1||delaminated beams:1||damping ratios:1||vibration of composite laminates:1||ultrasonic inspection:1||LAMINATED COMPOSITES:1||optimization:1||cylindrical composite shell:1||minmax problem:1||kinematics of deformation:1||coefficient of friction:1||fatigue:1||PLATE:1||HOLE:1||gain enhancement:1||mechanical structure:1||BAND SATELLITECOMMUNICATIONS:1||Functional composites:1||Impact behavior:1||superhydrophobic:1||LEVEL FATIGUE:1||failurecriterion:1||composite laminates:1||strain gage measurement:1||TIP:1||NANOTRIBOLOGY:1||life prediction:1||embedded antenna:1||notch effect:1||Smart skin:1||satellite mobile communication:1||wettability:1||fatigue modulus:1||Superhydrophobic:1||PERFORMANCE:1||ADHESION:1||Experimental approaches:1||Air conditioning:1||Micro/nanostructures:1||Wind power:1||MAGNESIUM CORROSION:1||Nanohoneycomb:1||Stripe patterned surface:1||Laser machining:1||Fuel cell:1||DIFFUSION LAYER:1||PYROELECTRIC NANOGENERATORS:1||NANOWIRE:1||sandwich:1||STIFFNESS REDUCTION:1||fracture toughness:1||DOUBLECANTILEVER BEAM:1||finite element method:1||SHEAR:1||composite structure:1||Transparency:1||Adhesive bonding:1||Smart materials:1||LOTUS:1||microstripantenna:1||fibermetal laminates:1||DAMAGE:1||shape memory alloy:1||impact location detection:1||MICROENCAPSULATED ISLETS:1||Self assembled monolayers:1||FACILE FABRICATION:1||Wetting:1||Energy harvesting:1||Interfacial behaviors:1||Theoretical study:1||Iterative fitting:1||Plate surfaces:1||Young Laplace equation:1||Nanoimprint lithography:1||Synergetic effect:1||ELECTRICFIELD:1||POLYMERFILMS:1||Artificial lotus leaf:1||Contact angle:1||Friction drag reduction:1||Rigid superhydrophobic surface:1||Antifrosting:1||PEM:1||STACKS:1||Pendulum motion:1||Selfpowered system:1||CONVERSION:1||Dual scale structure:1||WATERREPELLENT:1||VISUALIZATION:1||robust superhydrophobic surface:1||selfpowered:1||electrodegradation:1||bending rigidity:1||width tapered double cantilever beam (WTDCB):1||lowvelocity impact:1||DEGRADATION:1||equivalent biaxial strength:1||large deformation:1||mica:1||STIFFNESS:1||notched laminates:1||integrated antenna:1||direction of arrival estimation:1||error correction:1||UNKNOWN LOCATIONS:1||FIELD SOURCES:1||NOTCHED STRENGTH:1||Nanostructure:1||Composites:1||MOBILE ANTENNA:1||RECEPTION:1||Structural composites:1||SMART STRUCTURES:1||piezoceramics:1||LAYER THICKNESS:1||CRITERION:1||optical fiber vibration sensor:1||HEPATOCYTE:1||APOPTOSIS:1||Multiphase liquid:1||Interfacial energy:1||ALUMINATE SOLUTIONS:1||COLLECTION:1||RESISTANCE:1||Triboelectrification:1||Brazing:1||Aluminum:1||Industrial scale:1||Superhydrophobic surfaces:1||Acidic etchings:1||Sessile drops:1||Intensive research:1||Thermoplastic polymer:1||SUPERHYDROPHOBIC SURFACES:1||COPPER:1||Triboelectric nanogenerator:1||ETHYLENEGLYCOL:1||REPELLENT:1||Superhydrophobic:1||aluminum substrates:1||superhydrophilicity:1||NANOPARTICLES:1||Hierarchical structure:1||Aluminum hydroxide:1||WASTEWATER:1||MATRIX:1||DYNAMICS:1||
Publication & Time Cited Count
(For the Last 5 years)
Browse
Communities & Collections
Researcher
Title
Login
Library
Help