Open Access System for Information Sharing

Login Library

 

Conference
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorSON, JUNWOO-
dc.contributor.author윤효진-
dc.contributor.author최민석-
dc.contributor.author박재성-
dc.contributor.author임태원-
dc.contributor.author임규욱-
dc.contributor.author최시영-
dc.date.accessioned2019-04-08T08:13:26Z-
dc.date.available2019-04-08T08:13:26Z-
dc.date.created2019-03-13-
dc.date.issued2018-04-13-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/98222-
dc.description.abstractPhase transition by band filling control is one of the core concepts in correlated electronic systems. Unlike the substitutional dopants, hydrogen plays a key role in effectively filling significant amount of carriers in the empty narrow d band by reversibly adding it into interstitial sites and supplying carriers. Vanadium dioxide (VO2), typical correlated oxide with 3d 1 electronic configuration, can also reversibly incorporate hydrogen atoms into its interstitial sites and simultaneously occurs phase transition by its 3d band filling. Here, we demonstrate that as many as two hydrogen atoms can be incorporated into each VO2 unit cell, and that hydrogen is reversibly absorbed into, and released from, VO2 without destroying its lattice framework. This hydrogenation process demonstrates two-step insulator (VO2) – metal (HxVO2) – insulator (HVO2) phase modulation during inter-integer d-band filling. Moreover, HVO2 can be thermodynamically stabilized regardless of facet direction of VO2 epilayer, but remarkable discrepancy in kinetics of phase modulation was clearly visualized depending on the crystal facet. The unprecedented insulating HVO2 with 3d 2 configuration is attributed to highly doped electrons via hydrogenation process in conjunction with huge lattice expansion. Our finding suggests the possibility of reversible and dynamic control of topotactic phase modulation in VO2 and opens up the potential application in proton-based Mottronics and novel hydrogen storage.-
dc.publisher한국세라믹학회-
dc.relation.isPartOf2018 한국세라믹학회 춘계학술대회-
dc.relation.isPartOf2018 한국세라믹학회 춘계학술대회-
dc.titleSystematic Tuning of Hydrogen-induced Phase Transition in VO2 Epitaxial Thin Film-
dc.typeConference-
dc.type.rimsCONF-
dc.identifier.bibliographicCitation2018 한국세라믹학회 춘계학술대회-
dc.citation.conferenceDate2018-04-11-
dc.citation.conferencePlaceKO-
dc.citation.title2018 한국세라믹학회 춘계학술대회-
dc.contributor.affiliatedAuthorSON, JUNWOO-
dc.contributor.affiliatedAuthor윤효진-
dc.contributor.affiliatedAuthor박재성-
dc.contributor.affiliatedAuthor임규욱-
dc.contributor.affiliatedAuthor최시영-
dc.description.journalClass2-
dc.description.journalClass2-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

손준우SON, JUNWOO
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse