Open Access System for Information Sharing

Login Library

 

Article
Cited 10 time in webofscience Cited 11 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLEE, DONGHWA-
dc.contributor.authorDubois, Jonathan L.-
dc.contributor.authorKanai, Yosuke-
dc.date.accessioned2019-04-07T20:01:13Z-
dc.date.available2019-04-07T20:01:13Z-
dc.date.created2019-03-15-
dc.date.issued2014-12-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/96331-
dc.description.abstractThe staggered alignment of quasiparticle energy levels is widely regarded to be the key criterion necessary for electron-hole charge separation to occur at heterogeneous material interfaces. However, staggered energy levels at nanoscale interfaces, such as those between organic molecules and inorganic quantum dots, do not necessarily imply charge separation across the interface because the excitonic effect is often significant. Using quantum Monte Carlo calculations, we perform a detailed study of the role of the excitonic effects on charge separation across a representative set of interfaces between organic molecules and quantum dots. We find that the exciton binding energy of charge transfer excitons is significantly larger than would be estimated from a simple Coulombic analysis and, at these nanoscale interfaces, can be as significant as that of Frenkel excitons. This implies that charge transfer excitons can act as trap states and facilitate electron-hole recombination instead of charge separation. We conclude that in general, for nanoscale interfaces, high-fidelity quantum many-body calculations are essential for an accurate evaluation of the detailed energetic balance between localized and delocalized excitons and, thus, are crucial for the predictive treatment of interfacial charge separation processes.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfNANO LETTERS-
dc.titleImportance of Excitonic Effect in Charge Separation at Quantum-Dot/Organic Interface: First-Principles Many-Body Calculations-
dc.typeArticle-
dc.identifier.doi10.1021/nl502894b-
dc.type.rimsART-
dc.identifier.bibliographicCitationNANO LETTERS, v.14, no.12, pp.6884 - 6888-
dc.identifier.wosid000346322800021-
dc.citation.endPage6888-
dc.citation.number12-
dc.citation.startPage6884-
dc.citation.titleNANO LETTERS-
dc.citation.volume14-
dc.contributor.affiliatedAuthorLEE, DONGHWA-
dc.identifier.scopusid2-s2.0-84916629384-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusPBS-
dc.subject.keywordPlusEXCITATIONS-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusMOLECULES-
dc.subject.keywordPlusACCEPTOR-
dc.subject.keywordPlusSOLIDS-
dc.subject.keywordPlusSTATES-
dc.subject.keywordPlusDOTS-
dc.subject.keywordPlusSIZE-
dc.subject.keywordAuthorheterogeneous interface-
dc.subject.keywordAuthorPbS/thiophene-
dc.subject.keywordAuthorcharge transfer exciton-
dc.subject.keywordAuthorenergy level alignment-
dc.subject.keywordAuthorquantum Monte Carlo calculations-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이동화LEE, DONGHWA
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse