Open Access System for Information Sharing

Login Library

 

Article
Cited 66 time in webofscience Cited 67 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLEE, JUNG IN-
dc.contributor.authorShin, Myoungsoo-
dc.contributor.authorHong, Dongki-
dc.contributor.authorPARK, SOOJIN-
dc.date.accessioned2019-03-07T01:09:29Z-
dc.date.available2019-03-07T01:09:29Z-
dc.date.created2019-02-26-
dc.date.issued2019-04-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/94907-
dc.description.abstractRecently, a consensus has been reached that using lithium metal as an anode in rechargeable Li-ion batteries is the best way to obtain the high energy density necessary to power electronic devices. Challenges remain, however, with respect to controlling dendritic Li growth on these electrodes, enhancing compatibility with carbonate-based electrolytes, and forming a stable solid-electrolyte interface layer. Herein, a groundbreaking solution to these challenges consisting in the preparation of a Li2TiO3 (LT) layer that can be used to cover Li electrodes via a simple and scalable fabrication method, is suggested. Not only does this LT layer impede direct contact between electrode and electrolyte, thus avoiding side reactions, but it assists and expedites Li-ion flux in batteries, thus suppressing Li dendrite growth. Other effects of the LT layer on electrochemical performance are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, and galvanostatic intermittent titration technique analyses. Notably, LT layer-incorporating Li cells comprising high-capacity/voltage cathodes with reasonably high mass loading (LiNi0.8Co0.1Mn0.1O2, LiNi0.5Mn1.5O4, and LiMn2O4) show highly stable cycling performance in a carbonate-based electrolyte. Therefore, it is believed that the approach based on the LT layer can boost the realization of high energy density lithium metal batteries and next-generation batteries.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.relation.isPartOfADVANCED ENERGY MATERIALS-
dc.titleEfficient Li-Ion-Conductive Layer for the Realization of Highly Stable High-Voltage and High-Capacity Lithium Metal Batteries-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.201803722-
dc.type.rimsART-
dc.identifier.bibliographicCitationADVANCED ENERGY MATERIALS, v.9, no.13-
dc.identifier.wosid000467131300008-
dc.citation.number13-
dc.citation.titleADVANCED ENERGY MATERIALS-
dc.citation.volume9-
dc.contributor.affiliatedAuthorLEE, JUNG IN-
dc.contributor.affiliatedAuthorPARK, SOOJIN-
dc.identifier.scopusid2-s2.0-85061594125-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusCYCLING PERFORMANCE-
dc.subject.keywordPlusDENDRITE GROWTH-
dc.subject.keywordPlusANODES-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordAuthor3D-Li pathway-
dc.subject.keywordAuthorex situ formed artificial layers-
dc.subject.keywordAuthorLi metal batteries-
dc.subject.keywordAuthorLi2TiO3-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

박수진PARK, SOOJIN
Dept of Chemistry
Read more

Views & Downloads

Browse