Open Access System for Information Sharing

Login Library

 

Article
Cited 13 time in webofscience Cited 16 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorShin, Myeong Hwan-
dc.contributor.authorBaek, Seung Mi-
dc.contributor.authorPolyakov, Alexander V.-
dc.contributor.authorSemenova, Irina P.-
dc.contributor.authorValiev, Ruslan Z.-
dc.contributor.authorHwang, Woon-bong-
dc.contributor.authorHahn, Sei Kwang-
dc.contributor.authorKim, Hyoung Seop-
dc.date.accessioned2018-12-04T01:53:21Z-
dc.date.available2018-12-04T01:53:21Z-
dc.date.created2018-08-06-
dc.date.issued2018-07-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/94289-
dc.description.abstractThe commercially pure Ti (CP Ti) and equal-channel angular pressing (ECAP) processed Ti can contribute to the downsizing of medical devices with their superior mechanical properties and negligible toxicity. However, the ECAP-processed pure Ti has the risk of bacterial infection. Here, the coarse-and ultrafinegrained Ti substrates were surface-modified with molybdenum disulfide (MoS2) to improve the cell proliferation and growth with antibacterial effect for further dental applications. According to in vitro tests using the pre-osteoblast of MC3T3-E1 cell and a bacterial model of Escherichia coli (E. coli), MoS2 nanoflakes coated and ECAP-processed Ti substrates showed a significant increase in surface energy and singlet oxygen generation resulting in improved cell attachment and antibacterial effect. In addition, we confirmed the stability of the surface modified Ti substrates in a physiological solution and an artificial bone. Taken together, MoS2 modified and ECAP-processed Ti substrates might be successfully harnessed for various dental applications.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.relation.isPartOfScientific Reports-
dc.titleMolybdenum Disulfide Surface Modification of Ultrafine-Grained Titanium for Enhanced Cellular Growth and Antibacterial Effect-
dc.typeArticle-
dc.identifier.doi10.1038/s41598-018-28367-0-
dc.type.rimsART-
dc.identifier.bibliographicCitationScientific Reports, v.8, no.1-
dc.identifier.wosid000436953900016-
dc.citation.number1-
dc.citation.titleScientific Reports-
dc.citation.volume8-
dc.contributor.affiliatedAuthorHwang, Woon-bong-
dc.contributor.affiliatedAuthorHahn, Sei Kwang-
dc.contributor.affiliatedAuthorKim, Hyoung Seop-
dc.identifier.scopusid2-s2.0-85049406168-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc0-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusALLOYS-
dc.subject.keywordPlusHIGH-PRESSURE TORSION-
dc.subject.keywordPlusNANOSTRUCTURED TITANIUM-
dc.subject.keywordPlusBIOMEDICAL APPLICATIONS-
dc.subject.keywordPlusBACTERIAL ADHESION-
dc.subject.keywordPlusPURE TITANIUM-
dc.subject.keywordPlusOSTEOBLAST FUNCTIONS-
dc.subject.keywordPlusAQUEOUS DISPERSIONS-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

한세광HAHN, SEI KWANG
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse