Open Access System for Information Sharing

Login Library

 

Article
Cited 12 time in webofscience Cited 15 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorYoon, D.-W.-
dc.contributor.authorCho, J.-W.-
dc.contributor.authorKim, S.-H.-
dc.date.accessioned2018-06-15T05:37:57Z-
dc.date.available2018-06-15T05:37:57Z-
dc.date.created2017-12-21-
dc.date.issued2017-08-
dc.identifier.issn1073-5615-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/50676-
dc.description.abstractThe present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5?��m. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295?m?1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process. ? 2017, The Minerals, Metals & Materials Society and ASM International.-
dc.languageEnglish-
dc.publisherSpringer Boston-
dc.relation.isPartOfMetallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science-
dc.subjectCrystalline materials-
dc.subjectEnthalpy-
dc.subjectFourier transforms-
dc.subjectGlass-
dc.subjectHeat flux-
dc.subjectHeat transfer-
dc.subjectInfrared radiation-
dc.subjectIron-
dc.subjectMolds-
dc.subjectScanning electron microscopy-
dc.subjectX ray diffraction analysis-
dc.subjectCompositional changes-
dc.subjectDiameter of particle-
dc.subjectExtinction coefficients-
dc.subjectFourier transformations-
dc.subjectHeat flux densities-
dc.subjectMie scattering theory-
dc.subjectRadiative heat transfer-
dc.subjectScattering co-efficient-
dc.subjectFluxes-
dc.titleControlling Radiative Heat Transfer Across the Mold Flux Layer by the Scattering Effect of the Borosilicate Mold Flux System with Metallic Iron-
dc.typeArticle-
dc.identifier.doi10.1007/s11663-017-0975-z-
dc.type.rimsART-
dc.identifier.bibliographicCitationMetallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, v.48, no.4, pp.1951 - 1961-
dc.identifier.wosid000404516400005-
dc.date.tcdate2018-03-23-
dc.citation.endPage1961-
dc.citation.number4-
dc.citation.startPage1951-
dc.citation.titleMetallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science-
dc.citation.volume48-
dc.contributor.affiliatedAuthorYoon, D.-W.-
dc.contributor.affiliatedAuthorCho, J.-W.-
dc.contributor.affiliatedAuthorKim, S.-H.-
dc.identifier.scopusid2-s2.0-85017579137-
dc.description.journalClass1-
dc.description.journalClass1-
dc.type.docTypeArticle-
dc.subject.keywordPlusINITIAL SOLIDIFICATION-
dc.subject.keywordPlusLIGHT-SCATTERING-
dc.subject.keywordPlusSPHEROIDAL PARTICLES-
dc.subject.keywordPlusSTEEL-
dc.subject.keywordPlusFILM-
dc.subject.keywordPlusCRYSTALLIZATION-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusSIZE-
dc.subject.keywordPlusCOEFFICIENT-
dc.subject.keywordPlusBEHAVIOR-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조중욱CHO, JUNG WOOK
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse