Open Access System for Information Sharing

Login Library

 

Article
Cited 16 time in webofscience Cited 18 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorJi-Eun Lee-
dc.contributor.authorChoojin Park-
dc.contributor.authorKyungwha Chung-
dc.contributor.authorJu Won Lim-
dc.contributor.authorFilipe Marques Mota-
dc.contributor.authorJEONG, UNYONG-
dc.contributor.authorDong Ha Kim-
dc.date.accessioned2018-05-04T02:33:39Z-
dc.date.available2018-05-04T02:33:39Z-
dc.date.created2018-03-05-
dc.date.issued2018-01-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/41185-
dc.description.abstractWell-defined ordered arrays of plasmonic nanostructures were fabricated on stretchable substrates and tunable plasmon-coupling-based sensing properties were comprehensively demonstrated upon extension and contraction. Regular nanoprism patterns consisting of Ag, Au and Ag/Au bilayers were constructed on the stretchable polydimethylsiloxane substrate. The nanoprisms had the same orientation over the entire substrate (3 x 3 cm(2)) via metal deposition on a single-crystal microparticle monolayer assembly. The plasmonic sensor based on the Ag/Au bilayer showed a 6-fold enhanced surface enhanced Raman scattering signal under 20% uniaxial extension, whereas a 3-fold increase was observed upon 6% contraction, compared with the Au nanoprism arrays. The sensory behaviors were corroborated by finite-difference time-domain simulation, demonstrating the tunable electromagnetic field enhancement effect via the localized surface plasmon resonance coupling. The advanced flexible plasmonic-coupling-based devices with tunable and quantifiable performance herein suggested are expected to unlock promising potential in practical bio-sensing, biotechnological applications and optical devices.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.relation.isPartOfNanoscale-
dc.titleViable stretchable plasmonics based on unidirectional nanoprisms-
dc.typeArticle-
dc.identifier.doi10.1039/C7NR08299A-
dc.type.rimsART-
dc.identifier.bibliographicCitationNanoscale, v.10, no.8, pp.4105 - 4112-
dc.identifier.wosid000426148500061-
dc.citation.endPage4112-
dc.citation.number8-
dc.citation.startPage4105-
dc.citation.titleNanoscale-
dc.citation.volume10-
dc.contributor.affiliatedAuthorJEONG, UNYONG-
dc.identifier.scopusid2-s2.0-85042590898-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusSKYRMION LATTICE-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusBIFEO3-
dc.subject.keywordPlusHETEROSTRUCTURES-
dc.subject.keywordPlusSUPERLATTICES-
dc.subject.keywordPlusPOLARIZATION-
dc.subject.keywordPlusVORTICES-
dc.subject.keywordPlusROTATION-
dc.subject.keywordPlusDOMAINS-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

정운룡JEONG, UNYONG
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse