Open Access System for Information Sharing

Login Library

 

Article
Cited 11 time in webofscience Cited 11 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorAlexander Vadimovich Polyakov-
dc.contributor.authorIrina Petrovna Semenova-
dc.contributor.authorElena Vladimirovna Bobruk-
dc.contributor.authorSeung Mi Baek-
dc.contributor.authorKIM, HYOUNG SEOP-
dc.contributor.authorRuslan Zufarovich Valiev-
dc.date.accessioned2018-05-02T06:19:23Z-
dc.date.available2018-05-02T06:19:23Z-
dc.date.created2018-01-18-
dc.date.issued2018-01-
dc.identifier.issn1438-1656-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/40942-
dc.description.abstractThis study aims at achieving the best combination of strength, ductility, and impact toughness in ultrafine-grained (UFG) Ti Grade 4 produced by equal-channel angular pressing via Conform scheme (ECAP-C) with subsequent cold drawing. UFG structures with various parameters (e.g., size and shape of grains, dislocation density, conditions of boundaries) are formed by varying the treatment procedures (deformation temperature and speed at drawing, annealing temperature). The tensile and impact toughness tests were performed on samples with a V-shaped notch and different structures of commercially pure Ti Grade 4 in the coarse-grained and UFG states. The results demonstrated that grain refinement, higher dislocation density, and their elongated shape were obtained as a result of drawing at 200 degrees C, which led to a decrease in both the uniform elongation at tension and the impact toughness of Ti Grade 4. Short-term annealing at 400-450 degrees C could improve the impact toughness of UFG Ti with a non-significant decrease in strength. This short-term annealing contributes to the dislocation density decrease without considerable grain growth as a result of the recovery and redistribution of dislocations. The dependence of impact toughness on the strain hardening ability of UFG Ti was discussed.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.relation.isPartOfADVANCED ENGINEERING MATERIALS-
dc.subjectAnnealing-
dc.subjectDuctility-
dc.subjectFracture toughness-
dc.subjectGrain boundaries-
dc.subjectGrain growth-
dc.subjectGrain refinement-
dc.subjectGrain size and shape-
dc.subjectMedical applications-
dc.subjectPressing (forming)-
dc.subjectStrain hardening-
dc.subjectTitanium-
dc.subjectAnnealing temperatures-
dc.subjectCommercially Pure titaniums-
dc.subjectDeformation temperatures-
dc.subjectDislocation densities-
dc.subjectECAP-Conform-
dc.subjectImpact toughness tests-
dc.subjectStrength-
dc.subjectUltrafine grained structure-
dc.subjectEqual channel angular pressing-
dc.titleImpact Toughness of Ultrafine-Grained Commercially Pure Titanium for Medical Application-
dc.typeArticle-
dc.identifier.doi10.1002/adem.201700863-
dc.type.rimsART-
dc.identifier.bibliographicCitationADVANCED ENGINEERING MATERIALS, v.20, no.5-
dc.identifier.wosid000433331400018-
dc.citation.number5-
dc.citation.titleADVANCED ENGINEERING MATERIALS-
dc.citation.volume20-
dc.contributor.affiliatedAuthorKIM, HYOUNG SEOP-
dc.identifier.scopusid2-s2.0-85040067277-
dc.description.journalClass1-
dc.description.journalClass1-
dc.type.docTypeArticle-
dc.subject.keywordPlusCESIUM-
dc.subject.keywordPlusCOBALT-
dc.subject.keywordPlusHEXACYANOFERRATE-
dc.subject.keywordPlusPRECIPITATION-
dc.subject.keywordPlusREMEDIATION-
dc.subject.keywordPlusWATER-
dc.subject.keywordAuthorCRUD-
dc.subject.keywordAuthorDecontamination-
dc.subject.keywordAuthorElectrokinetic remediation-
dc.subject.keywordAuthorIon exchange membrane-
dc.subject.keywordAuthorRadioactive waste-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse