Open Access System for Information Sharing

Login Library

 

Article
Cited 476 time in webofscience Cited 577 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKim, SH-
dc.contributor.authorKwak, SY-
dc.contributor.authorSohn, BH-
dc.contributor.authorPark, TH-
dc.date.accessioned2016-03-31T14:00:09Z-
dc.date.available2016-03-31T14:00:09Z-
dc.date.created2009-03-05-
dc.date.issued2003-01-01-
dc.identifier.issn0376-7388-
dc.identifier.other2003-OAK-0000010314-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/20967-
dc.description.abstractMicrobial biofouling is one of the major obstacles for reaching the ultimate goal to realize high permeability over a prolonged period of reverse osmosis operation. In this study, the hybrid thin-film-composite (TFC) membrane consisted of self-assembly of TiO2 nanoparticles with photocatalytic destructive capability on microorganisms was devised as a novel means to reduce membrane biofouling. Then, the anti-fouling and fouling mitigation on the actual commercialized TFC was verified. TiO2 nanoparticles of a quantum size (similar to10 nm or less) in anatase crystal structure were prepared from the controlled hydrolysis of titanium tetraisopropoxide and characterized by X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). Hybrid thin-film-composite (TFC) membrane was prepared by self-assembly of the TiO2 nanoparticles through coordination and H-bonding interaction with the COOH functional group of aromatic polyamide thin-film layer, which was ascertained by X-ray photoelectron spectroscopy (XPS). The hybrid membrane was shown to possess the dramatic photobactericidal effect on Escherchia coli (E. coli) under UV light illumination. Finally, introduction of TiO2 nanoparticles on the actual commercial TFC membrane and application of RO field test after exposure to microbial cells verified a substantial prevention against the microbial fouling by showing less loss of RO permeability, offering a strong potential for possible use as a new type of anti-biofouling TFC membrane. (C) 2002 Elsevier Science B.V. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.relation.isPartOfJOURNAL OF MEMBRANE SCIENCE-
dc.subjectTiO2 hybrid membrane-
dc.subjectanti-fouling membrane-
dc.subjectphotocatalytic bactericidal effect-
dc.subjectTiO2 nanoparticles-
dc.subjectbiofouling-
dc.subjectREVERSE-OSMOSIS MEMBRANES-
dc.subjectSEMICONDUCTOR PHOTOCATALYSIS-
dc.subjectSYSTEMS-
dc.titleDesign of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem-
dc.typeArticle-
dc.contributor.college신소재공학과-
dc.identifier.doi10.1016/S0376-7388(02)00418-0-
dc.author.googleKim, SH-
dc.author.googleKwak, SY-
dc.author.googleSohn, BH-
dc.author.googlePark, TH-
dc.relation.volume211-
dc.relation.issue1-
dc.relation.startpage157-
dc.relation.lastpage165-
dc.contributor.id10077433-
dc.relation.journalJOURNAL OF MEMBRANE SCIENCE-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationJOURNAL OF MEMBRANE SCIENCE, v.211, no.1, pp.157 - 165-
dc.identifier.wosid000180329200014-
dc.date.tcdate2019-01-01-
dc.citation.endPage165-
dc.citation.number1-
dc.citation.startPage157-
dc.citation.titleJOURNAL OF MEMBRANE SCIENCE-
dc.citation.volume211-
dc.contributor.affiliatedAuthorKim, SH-
dc.identifier.scopusid2-s2.0-0037212504-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc325-
dc.type.docTypeArticle-
dc.subject.keywordPlusREVERSE-OSMOSIS MEMBRANES-
dc.subject.keywordPlusSEMICONDUCTOR PHOTOCATALYSIS-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordAuthorTiO2 hybrid membrane-
dc.subject.keywordAuthoranti-fouling membrane-
dc.subject.keywordAuthorphotocatalytic bactericidal effect-
dc.subject.keywordAuthorTiO2 nanoparticles-
dc.subject.keywordAuthorbiofouling-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPolymer Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김선효KIM, SEON HYO
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse