Open Access System for Information Sharing

Login Library

 

Article
Cited 11 time in webofscience Cited 12 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorShin, J-
dc.contributor.authorLee, OC-
dc.contributor.authorSung, W-
dc.date.accessioned2015-07-07T19:01:49Z-
dc.date.available2015-07-07T19:01:49Z-
dc.date.created2015-06-18-
dc.date.issued2015-04-21-
dc.identifier.issn0021-9606-
dc.identifier.other2015-OAK-0000032687en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/13036-
dc.description.abstractA recent experiment using fluorescence microscopy showed that double-stranded DNA fragments shorter than 100 base pairs loop with the probabilities higher by the factor of 10(2)-10(6) than predicted by the worm-like chain (WLC) model [R. Vafabakhsh and T. Ha, Science 337, 1101(2012)]. Furthermore, the looping probabilities were found to be nearly independent of the loop size. The results signify a breakdown of the WLC model for DNA mechanics which works well on long length scales and calls for fundamental understanding for stressed DNA on shorter length scales. We develop an analytical, statistical mechanical model to investigate what emerges to the short DNA under a tight bending. A bending above a critical level initiates nucleation of a thermally induced bubble, which could be trapped for a long time, in contrast to the bubbles in both free and uniformly bent DNAs, which are either transient or unstable. The trapped bubble is none other than the previously hypothesized kink, which releases the bending energy more easily as the contour length decreases. It leads to tremendous enhancement of the cyclization probabilities, in a reasonable agreement with experiment. (C) 2015 AIP Publishing LLC.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherAMER INST PHYSICS-
dc.relation.isPartOfJOURNAL OF CHEMICAL PHYSICS-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.subjectDOUBLE HELIX-
dc.subjectDENATURATION-
dc.subjectFLEXIBILITY-
dc.subjectCYCLIZATION-
dc.subjectDYNAMICS-
dc.titleHow a short double-stranded DNA bends-
dc.typeArticle-
dc.contributor.college물리학과en_US
dc.identifier.doi10.1063/1.4916379-
dc.author.googleShin, Jen_US
dc.author.googleLee, OCen_US
dc.author.googleSung, Wen_US
dc.relation.volume142en_US
dc.relation.issue15en_US
dc.contributor.id10081361en_US
dc.relation.journalJOURNAL OF CHEMICAL PHYSICSen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationJOURNAL OF CHEMICAL PHYSICS, v.142, no.15-
dc.identifier.wosid000353307700053-
dc.date.tcdate2019-01-01-
dc.citation.number15-
dc.citation.titleJOURNAL OF CHEMICAL PHYSICS-
dc.citation.volume142-
dc.contributor.affiliatedAuthorSung, W-
dc.identifier.scopusid2-s2.0-84928548699-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc5-
dc.description.scptc6*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse